BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12859951)

  • 41. Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines.
    Tacchini L; De Ponti C; Matteucci E; Follis R; Desiderio MA
    Carcinogenesis; 2004 Nov; 25(11):2089-100. PubMed ID: 15240510
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer.
    Zerbini LF; Wang Y; Cho JY; Libermann TA
    Cancer Res; 2003 May; 63(9):2206-15. PubMed ID: 12727841
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Induction of Mdr1b expression by tumor necrosis factor-alpha in rat liver cells is independent of p53 but requires NF-kappaB signaling.
    Ros JE; Schuetz JD; Geuken M; Streetz K; Moshage H; Kuipers F; Manns MP; Jansen PL; Trautwein C; Müller M
    Hepatology; 2001 Jun; 33(6):1425-31. PubMed ID: 11391531
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2.
    Chua HL; Bhat-Nakshatri P; Clare SE; Morimiya A; Badve S; Nakshatri H
    Oncogene; 2007 Feb; 26(5):711-24. PubMed ID: 16862183
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptional regulation of UCP4 by NF-kappaB and its role in mediating protection against MPP+ toxicity.
    Ho JW; Ho PW; Zhang WY; Liu HF; Kwok KH; Yiu DC; Chan KH; Kung MH; Ramsden DB; Ho SL
    Free Radic Biol Med; 2010 Jul; 49(2):192-204. PubMed ID: 20385226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transformation nonresponsive cells owe their resistance to lack of p65/nuclear factor-kappaB activation.
    Hsu TC; Nair R; Tulsian P; Camalier CE; Hegamyer GA; Young MR; Colburn NH
    Cancer Res; 2001 May; 61(10):4160-8. PubMed ID: 11358840
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exchange of a nuclear corepressor between NF-kappaB and CREB mediates inhibition of phosphoenolpyruvate carboxykinase transcription by NF-kappaB.
    Yan JH; Gao ZG; Ye JP; Weng JP
    Chin Med J (Engl); 2010 Jan; 123(2):221-6. PubMed ID: 20137375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of cis-regulatory elements of the vascular endothelial growth inhibitor gene promoter.
    Xiao Q; Hsu CY; Chen H; Ma X; Xu J; Lee JM
    Biochem J; 2005 Jun; 388(Pt 3):913-20. PubMed ID: 15702971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression.
    Sitcheran R; Gupta P; Fisher PB; Baldwin AS
    EMBO J; 2005 Feb; 24(3):510-20. PubMed ID: 15660126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.
    Reuter S; Schnekenburger M; Cristofanon S; Buck I; Teiten MH; Daubeuf S; Eifes S; Dicato M; Aggarwal BB; Visvikis A; Diederich M
    Biochem Pharmacol; 2009 Feb; 77(3):397-411. PubMed ID: 18996094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-beta is mediated by a nuclear factor-kappaB site.
    Ogawa K; Chen F; Kuang C; Chen Y
    Biochem J; 2004 Jul; 381(Pt 2):413-22. PubMed ID: 15086314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins.
    Nowotny M; Spiechowicz M; Jastrzebska B; Filipek A; Kitagawa K; Kuznicki J
    J Biol Chem; 2003 Jul; 278(29):26923-8. PubMed ID: 12746458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains.
    Leclerc E; Fritz G; Weibel M; Heizmann CW; Galichet A
    J Biol Chem; 2007 Oct; 282(43):31317-31. PubMed ID: 17726019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. S100A6 drives lymphatic metastasis of liver cancer via activation of the RAGE/NF-kB/VEGF-D pathway.
    Chen T; Ruan Y; Ji L; Cai J; Tong M; Xue Y; Zhao H; Cai X; Xu J
    Cancer Lett; 2024 Apr; 587():216709. PubMed ID: 38350547
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NFkappaB-p65 dependent transcriptional regulation of glycosyltransferases in human colon adenocarcinoma HT-29 by stimulation with tumor necrosis factor alpha.
    Higai K; Ishihara S; Matsumoto K
    Biol Pharm Bull; 2006 Dec; 29(12):2372-7. PubMed ID: 17142966
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of cell specific expression of calcyclin (S100A6) in nerve cells and other tissues.
    Leśniak W; Swart GW; Bloemers HP; Kuźnicki J
    Acta Neurobiol Exp (Wars); 2000; 60(4):569-75. PubMed ID: 11200185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Role of S100A6 in Human Diseases: Molecular Mechanisms and Therapeutic Potential.
    Yang F; Ma J; Zhu D; Wang Z; Li Y; He X; Zhang G; Kang X
    Biomolecules; 2023 Jul; 13(7):. PubMed ID: 37509175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer.
    Wang XH; Zhang LH; Zhong XY; Xing XF; Liu YQ; Niu ZJ; Peng Y; Du H; Zhang GG; Hu Y; Liu N; Zhu YB; Ge SH; Zhao W; Lu AP; Li JY; Ji JF
    Am J Pathol; 2010 Aug; 177(2):586-97. PubMed ID: 20581057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Knockdown of otubain 2 inhibits liver cancer cell growth by suppressing NF-κB signaling.
    Gu ZL; Huang J; Zhen LL
    Kaohsiung J Med Sci; 2020 Jun; 36(6):399-404. PubMed ID: 32003539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tumor necrosis factor α upregulates the bile acid efflux transporter OATP3A1 via multiple signaling pathways in cholestasis.
    Li M; Wang W; Cheng Y; Zhang X; Zhao N; Tan Y; Xie Q; Chai J; Pan Q
    J Biol Chem; 2022 Feb; 298(2):101543. PubMed ID: 34971708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.