These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sequence and structural conservation in RNA ribose zippers. Tamura M; Holbrook SR J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903 [TBL] [Abstract][Full Text] [Related]
3. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family. Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999 [TBL] [Abstract][Full Text] [Related]
4. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs. Sponer JE; Spackova N; Leszczynski J; Sponer J J Phys Chem B; 2005 Jun; 109(22):11399-410. PubMed ID: 16852393 [TBL] [Abstract][Full Text] [Related]
5. Geometric nomenclature and classification of RNA base pairs. Leontis NB; Westhof E RNA; 2001 Apr; 7(4):499-512. PubMed ID: 11345429 [TBL] [Abstract][Full Text] [Related]
6. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. Cheng AC; Chen WW; Fuhrmann CN; Frankel AD J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263 [TBL] [Abstract][Full Text] [Related]
7. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. Leontis NB; Westhof E RNA; 1998 Sep; 4(9):1134-53. PubMed ID: 9740131 [TBL] [Abstract][Full Text] [Related]
8. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations. Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254 [TBL] [Abstract][Full Text] [Related]
9. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family. Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704 [TBL] [Abstract][Full Text] [Related]
10. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. Auffinger P; Westhof E J Mol Biol; 1999 Sep; 292(3):467-83. PubMed ID: 10497015 [TBL] [Abstract][Full Text] [Related]
11. The lonepair triloop: a new motif in RNA structure. Lee JC; Cannone JJ; Gutell RR J Mol Biol; 2003 Jan; 325(1):65-83. PubMed ID: 12473452 [TBL] [Abstract][Full Text] [Related]
12. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. Lee JC; Gutell RR J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141 [TBL] [Abstract][Full Text] [Related]
13. The non-Watson-Crick base pairs and their associated isostericity matrices. Leontis NB; Stombaugh J; Westhof E Nucleic Acids Res; 2002 Aug; 30(16):3497-531. PubMed ID: 12177293 [TBL] [Abstract][Full Text] [Related]
14. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction. Mizuno H; Sundaralingam M Nucleic Acids Res; 1978 Nov; 5(11):4451-61. PubMed ID: 724522 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. Burkard ME; Kierzek R; Turner DH J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596 [TBL] [Abstract][Full Text] [Related]
16. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. Varani G; McClain WH EMBO Rep; 2000 Jul; 1(1):18-23. PubMed ID: 11256617 [TBL] [Abstract][Full Text] [Related]
17. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts. Millen AL; Churchill CD; Manderville RA; Wetmore SD J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889 [TBL] [Abstract][Full Text] [Related]
18. The structures and relative stabilities of d(G x G) reverse Hoogsteen, d(G x T) reverse wobble, and d(G x C) reverse Watson-Crick base-pairs in DNA crystals. Mooers BH; Eichman BF; Ho PS J Mol Biol; 1997 Jun; 269(5):796-810. PubMed ID: 9223642 [TBL] [Abstract][Full Text] [Related]
19. Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-watson-crick/sugar edge base pair family. Vokacova Z; Sponer J; Sponer JE; Sychrovský V J Phys Chem B; 2007 Sep; 111(36):10813-24. PubMed ID: 17713941 [TBL] [Abstract][Full Text] [Related]
20. Statistical analysis of atomic contacts at RNA-protein interfaces. Treger M; Westhof E J Mol Recognit; 2001; 14(4):199-214. PubMed ID: 11500966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]