These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 12860120)

  • 21. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and evolutionary classification of G/U wobble basepairs in the ribosome.
    Mokdad A; Krasovska MV; Sponer J; Leontis NB
    Nucleic Acids Res; 2006; 34(5):1326-41. PubMed ID: 16522645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition of cognate transfer RNA by the 30S ribosomal subunit.
    Ogle JM; Brodersen DE; Clemons WM; Tarry MJ; Carter AP; Ramakrishnan V
    Science; 2001 May; 292(5518):897-902. PubMed ID: 11340196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isostericity and tautomerism of base pairs in nucleic acids.
    Westhof E
    FEBS Lett; 2014 Aug; 588(15):2464-9. PubMed ID: 24950426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A story: unpaired adenosine bases in ribosomal RNAs.
    Gutell RR; Cannone JJ; Shang Z; Du Y; Serra MJ
    J Mol Biol; 2000 Dec; 304(3):335-54. PubMed ID: 11090278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site.
    Strobel SA; Cech TR
    Science; 1995 Feb; 267(5198):675-9. PubMed ID: 7839142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post Hartree-Fock studies of the canonical Watson-Crick DNA base pairs: molecular structure and the nature of stability.
    Danilov VI; Anisimov VM
    J Biomol Struct Dyn; 2005 Feb; 22(4):471-82. PubMed ID: 15588110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An innate twist between Crick's wobble and Watson-Crick base pairs.
    Ananth P; Goldsmith G; Yathindra N
    RNA; 2013 Aug; 19(8):1038-53. PubMed ID: 23861536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An RNA Molecular Switch: Intrinsic Flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN Internal Loops Studied by Molecular Dynamics Methods.
    Réblová K; Střelcová Z; Kulhánek P; Beššeová I; Mathews DH; Van Nostrand K; Yildirim I; Turner DH; Šponer J
    J Chem Theory Comput; 2010 Mar; 6(3):910-29. PubMed ID: 26613316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs.
    Szymanski ES; Kimsey IJ; Al-Hashimi HM
    J Am Chem Soc; 2017 Mar; 139(12):4326-4329. PubMed ID: 28290687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis.
    Réblová K; Šponer JE; Špačková N; Beššeová I; Šponer J
    J Phys Chem B; 2011 Dec; 115(47):13897-910. PubMed ID: 21999672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR structures of r(GCAGGCGUGC)2 and determinants of stability for single guanosine-guanosine base pairs.
    Burkard ME; Turner DH
    Biochemistry; 2000 Sep; 39(38):11748-62. PubMed ID: 10995243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices.
    Elgavish T; Cannone JJ; Lee JC; Harvey SC; Gutell RR
    J Mol Biol; 2001 Jul; 310(4):735-53. PubMed ID: 11453684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods.
    Réblová K; Střelcová Z; Kulhánek P; Beššeová I; Mathews DH; Nostrand KV; Yildirim I; Turner DH; Sponer J
    J Chem Theory Comput; 2010 Jan; 2010(6):910-929. PubMed ID: 21132104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.
    Takezawa Y; Shionoya M
    Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Requirement for a conserved, tertiary interaction in the core of 23S ribosomal RNA.
    Aagaard C; Douthwaite S
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):2989-93. PubMed ID: 8159692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.