These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 12860128)

  • 21. Dual effect of chloramphenicol peptides on ribosome inhibition.
    Bougas A; Vlachogiannis IA; Gatos D; Arenz S; Dinos GP
    Amino Acids; 2017 May; 49(5):995-1004. PubMed ID: 28283906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.
    Beringer M; Rodnina MV
    Biol Chem; 2007 Jul; 388(7):687-91. PubMed ID: 17570820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome.
    Gürel G; Blaha G; Moore PB; Steitz TA
    J Mol Biol; 2009 May; 389(1):146-56. PubMed ID: 19362093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalysis of ribosomal translocation by sparsomycin.
    Fredrick K; Noller HF
    Science; 2003 May; 300(5622):1159-62. PubMed ID: 12750524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribosomal crystallography: peptide bond formation, chaperone assistance and antibiotics activity.
    Yonath A
    Mol Cells; 2005 Aug; 20(1):1-16. PubMed ID: 16258236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
    Cruz-Vera LR; New A; Squires C; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3140-6. PubMed ID: 17293420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.
    Fulle S; Gohlke H
    J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibiotics as probes of ribosome structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics.
    Pestka S
    Antimicrob Agents Chemother; 1974 Mar; 5(3):255-67. PubMed ID: 4599122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes.
    Contreras A; Vázquez D
    Eur J Biochem; 1977 Apr; 74(3):539-47. PubMed ID: 323015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit.
    Simonović M; Steitz TA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):500-5. PubMed ID: 18187576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics.
    Yonath A; Bashan A
    Annu Rev Microbiol; 2004; 58():233-51. PubMed ID: 15487937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity.
    Brunelle JL; Youngman EM; Sharma D; Green R
    RNA; 2006 Jan; 12(1):33-9. PubMed ID: 16373492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structures of antibiotics bound to the E site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole.
    Schroeder SJ; Blaha G; Tirado-Rives J; Steitz TA; Moore PB
    J Mol Biol; 2007 Apr; 367(5):1471-9. PubMed ID: 17321546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ribosomal protein L3: influence on ribosome structure and function.
    Petrov A; Meskauskas A; Dinman JD
    RNA Biol; 2004 May; 1(1):59-65. PubMed ID: 17194937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin.
    Harms JM; Schlünzen F; Fucini P; Bartels H; Yonath A
    BMC Biol; 2004 Apr; 2():4. PubMed ID: 15059283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. After the ribosome structures: how does peptidyl transferase work?
    Moore PB; Steitz TA
    RNA; 2003 Feb; 9(2):155-9. PubMed ID: 12554855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mode of action of griseoviridin at the ribosome level.
    Barbacid M; Contreras A; Vazquez D
    Biochim Biophys Acta; 1975 Jul; 395(3):347-54. PubMed ID: 1096949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Derived on 20 October 2002 at the 28th FEBS Meeting in Istanbul.
    Agmon I; Auerbach T; Baram D; Bartels H; Bashan A; Berisio R; Fucini P; Hansen HA; Harms J; Kessler M; Peretz M; Schluenzen F; Yonath A; Zarivach R
    Eur J Biochem; 2003 Jun; 270(12):2543-56. PubMed ID: 12787020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium.
    Harms J; Schluenzen F; Zarivach R; Bashan A; Gat S; Agmon I; Bartels H; Franceschi F; Yonath A
    Cell; 2001 Nov; 107(5):679-88. PubMed ID: 11733066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.