BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12860134)

  • 1. Parallel pathways in cytochrome c(551) folding.
    Gianni S; Travaglini-Allocatelli C; Cutruzzolà F; Brunori M; Shastry MC; Roder H
    J Mol Biol; 2003 Jul; 330(5):1145-52. PubMed ID: 12860134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands.
    Elöve GA; Bhuyan AK; Roder H
    Biochemistry; 1994 Jun; 33(22):6925-35. PubMed ID: 8204626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding.
    Das TK; Mazumdar S; Mitra S
    Eur J Biochem; 1998 Jun; 254(3):662-70. PubMed ID: 9688280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snapshots of protein folding. A study on the multiple transition state pathway of cytochrome c(551) from Pseudomonas aeruginosa.
    Gianni S; Travaglini-Allocatelli C; Cutruzzolà F; Bigotti MG; Brunori M
    J Mol Biol; 2001 Jun; 309(5):1177-87. PubMed ID: 11399087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism of folding and unfolding of Rhodobacter capsulatus cytochrome c2.
    Sauder JM; MacKenzie NE; Roder H
    Biochemistry; 1996 Dec; 35(51):16852-62. PubMed ID: 8988024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding mechanism of Pseudomonas aeruginosa cytochrome c551: role of electrostatic interactions on the hydrophobic collapse and transition state properties.
    Travaglini-Allocatelli C; Cutruzzolà F; Bigotti MG; Staniforth RA; Brunori M
    J Mol Biol; 1999 Jun; 289(5):1459-67. PubMed ID: 10373379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of the iron-methionine bond in c-type cytochromes: crystal structure of oxidized and reduced cytochrome c(2) from Rhodopseudomonas palustris and its ammonia complex.
    Geremia S; Garau G; Vaccari L; Sgarra R; Viezzoli MS; Calligaris M; Randaccio L
    Protein Sci; 2002 Jan; 11(1):6-17. PubMed ID: 11742117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles.
    Pinheiro TJ; Elöve GA; Watts A; Roder H
    Biochemistry; 1997 Oct; 36(42):13122-32. PubMed ID: 9335575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast coordination changes in cytochrome c do not necessarily imply folding.
    Arcovito A; Gianni S; Brunori M; Travaglini-Allocatelli C; Bellelli A
    J Biol Chem; 2001 Nov; 276(44):41073-8. PubMed ID: 11487579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding intermediates in cytochrome c.
    Yeh SR; Rousseau DL
    Nat Struct Biol; 1998 Mar; 5(3):222-8. PubMed ID: 9501916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome c' folding triggered by electron transfer: fast and slow formation of four-helix bundles.
    Lee JC; Gray HB; Winkler JR
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7760-4. PubMed ID: 11438728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of ligand substitution in ferrocytochrome c folding.
    Telford JR; Tezcan FA; Gray HB; Winkler JR
    Biochemistry; 1999 Feb; 38(6):1944-9. PubMed ID: 10026276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferricytochrome c. Refolding and the methionine 80-sulfur-iron linkage.
    Myer YP
    J Biol Chem; 1984 May; 259(10):6127-33. PubMed ID: 6327668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence energy transfer indicates similar transient and equilibrium intermediates in staphylococcal nuclease folding.
    Nishimura C; Riley R; Eastman P; Fink AL
    J Mol Biol; 2000 Jun; 299(4):1133-46. PubMed ID: 10843864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.