BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12860396)

  • 1. Isolation and characterisation of 5'-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya.
    Schaffrath C; Deng H; O'Hagan D
    FEBS Lett; 2003 Jul; 547(1-3):111-4. PubMed ID: 12860396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of enzymatic fluorination in Streptomyces cattleya.
    Zhu X; Robinson DA; McEwan AR; O'Hagan D; Naismith JH
    J Am Chem Soc; 2007 Nov; 129(47):14597-604. PubMed ID: 17985882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism.
    Cadicamo CD; Courtieu J; Deng H; Meddour A; O'Hagan D
    Chembiochem; 2004 May; 5(5):685-90. PubMed ID: 15122641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and mechanism of a bacterial fluorinating enzyme.
    Dong C; Huang F; Deng H; Schaffrath C; Spencer JB; O'Hagan D; Naismith JH
    Nature; 2004 Feb; 427(6974):561-5. PubMed ID: 14765200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization and X-ray diffraction of 5'-fluoro-5'-deoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya.
    Dong C; Deng H; Dorward M; Schaffrath C; O'Hagan D; Naismith JH
    Acta Crystallogr D Biol Crystallogr; 2003 Dec; 59(Pt 12):2292-3. PubMed ID: 14646098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enzymatic Finkelstein reaction: fluorinase catalyses direct halogen exchange.
    Lowe PT; Cobb SL; O'Hagan D
    Org Biomol Chem; 2019 Aug; 17(32):7493-7496. PubMed ID: 31364664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Engineered E. coli Strain for Direct in Vivo Fluorination.
    Markakis K; Lowe PT; Davison-Gates L; O'Hagan D; Rosser SJ; Elfick A
    Chembiochem; 2020 Jul; 21(13):1856-1860. PubMed ID: 32003116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assay for the enantiomeric analysis of [2H1]-fluoroacetic acid: insight into the stereochemical course of fluorination during fluorometabolite biosynthesis in streptomyces cattleya.
    O'Hagan D; Goss RJ; Meddour A; Courtieu J
    J Am Chem Soc; 2003 Jan; 125(2):379-87. PubMed ID: 12517149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI.
    Schluckebier G; Kozak M; Bleimling N; Weinhold E; Saenger W
    J Mol Biol; 1997 Jan; 265(1):56-67. PubMed ID: 8995524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic mechanism of the tRNA-modifying enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA).
    Van Lanen SG; Iwata-Reuyl D
    Biochemistry; 2003 May; 42(18):5312-20. PubMed ID: 12731872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis.
    Wang Y; Deng Z; Qu X
    F1000Res; 2014; 3():61. PubMed ID: 24795808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya.
    Deng H; O'Hagan D; Schaffrath C
    Nat Prod Rep; 2004 Dec; 21(6):773-84. PubMed ID: 15565254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling.
    Miller D; Xu H; White RH
    J Bacteriol; 2015 Jul; 197(14):2284-91. PubMed ID: 25917907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry: biosynthesis of an organofluorine molecule.
    O'Hagan D; Schaffrath C; Cobb SL; Hamilton JT; Murphy CD
    Nature; 2002 Mar; 416(6878):279. PubMed ID: 11907567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of S-adenosylmethionine and related sulfur metabolites in bacterial isolates of Pseudomonas aeruginosa (BAA-47) by liquid chromatography/electrospray ionization coupled to a hybrid linear quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometry.
    Cataldi TR; Bianco G; Abate S; Mattia D
    Rapid Commun Mass Spectrom; 2009 Nov; 23(21):3465-77. PubMed ID: 19813285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sinefungin and S-adenosylhomocysteine on DNA and protein methyltransferases from Streptomyces and other bacteria.
    Barbés C; Sánchez J; Yebra MJ; Robert-Geró M; Hardisson C
    FEMS Microbiol Lett; 1990 Jun; 57(3):239-43. PubMed ID: 2210336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus.
    Oster LM; Lester DR; Terwisscha van Scheltinga A; Svenda M; van Lun M; Généreux C; Andersson I
    J Mol Biol; 2006 Apr; 358(2):546-58. PubMed ID: 16527306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Streptomyces collinus thiolase with novel acetyl-CoA:acyl carrier protein transacylase activity.
    Lobo S; Florova G; Reynolds KA
    Biochemistry; 2001 Oct; 40(39):11955-64. PubMed ID: 11570897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assignment of enzymatic functions to specific regions of the PLP-dependent heme protein cystathionine beta-synthase.
    Taoka S; Widjaja L; Banerjee R
    Biochemistry; 1999 Oct; 38(40):13155-61. PubMed ID: 10529187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.