BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12860925)

  • 21. Immunolocalization of the TASK2 Potassium Channel in Frog Kidney.
    Nesovic-Ostojic J; Markovic-Lipkovski J; Todorovic J; Cirovic S; Kovacevic S; Paunovic A; Cemerikic D; Milovanovic A
    Folia Biol (Krakow); 2016; 64(3):183-188. PubMed ID: 29847078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling.
    Tamarina NA; Kuznetsov A; Fridlyand LE; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E578-85. PubMed ID: 16014354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TRPV4 exhibits a functional role in cell-volume regulation.
    Becker D; Blase C; Bereiter-Hahn J; Jendrach M
    J Cell Sci; 2005 Jun; 118(Pt 11):2435-40. PubMed ID: 15923656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A potassium channel-linked mechanism of glial cell swelling in the postischemic retina.
    Pannicke T; Iandiev I; Uckermann O; Biedermann B; Kutzera F; Wiedemann P; Wolburg H; Reichenbach A; Bringmann A
    Mol Cell Neurosci; 2004 Aug; 26(4):493-502. PubMed ID: 15276152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The developmental expression of K+ channels in retinal glial cells is associated with a decrease of osmotic cell swelling.
    Wurm A; Pannicke T; Iandiev I; Wiedemann P; Reichenbach A; Bringmann A
    Glia; 2006 Oct; 54(5):411-23. PubMed ID: 16886204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl- secretion.
    Matos JE; Sausbier M; Beranek G; Sausbier U; Ruth P; Leipziger J
    Acta Physiol (Oxf); 2007 Mar; 189(3):251-8. PubMed ID: 17305705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine.
    Matsuyama H; Nguyen TV; Hunne B; Thacker M; Needham K; McHugh D; Furness JB
    Neuroscience; 2008 Aug; 155(3):738-50. PubMed ID: 18590799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of regulatory volume decrease in freshly isolated mouse cholangiocytes.
    Cho WK
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1320-7. PubMed ID: 12433664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stretch- and volume-activated channels in isolated proximal tubule cells.
    Filipovic D; Sackin H
    Am J Physiol; 1992 May; 262(5 Pt 2):F857-70. PubMed ID: 1317123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH sensing in the two-pore domain K+ channel, TASK2.
    Morton MJ; Abohamed A; Sivaprasadarao A; Hunter M
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):16102-6. PubMed ID: 16239344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells.
    Afzali AM; Ruck T; Herrmann AM; Iking J; Sommer C; Kleinschnitz C; Preuβe C; Stenzel W; Budde T; Wiendl H; Bittner S; Meuth SG
    Am J Physiol Cell Physiol; 2016 Oct; 311(4):C583-C595. PubMed ID: 27488672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. H+-ATPase activity in selective disruption of H+-K+-ATPase alpha 1 gene of mice under normal and K-depleted conditions.
    Nakamura S
    J Lab Clin Med; 2006 Jan; 147(1):45-51. PubMed ID: 16443004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.
    Aller MI; Wisden W
    Neuroscience; 2008 Feb; 151(4):1154-72. PubMed ID: 18222039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional and molecular identification of pH-sensitive K+ channels in murine urinary bladder smooth muscle.
    Beckett EA; Han I; Baker SA; Han J; Britton FC; Koh SD
    BJU Int; 2008 Jul; 102(1):113-24. PubMed ID: 18394011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hypertonicity-activated nonselective conductance in single proximal tubule cells isolated from mouse kidney.
    Balloch KJ; Hartley JA; Millar ID; Kibble JD; Robson L
    J Membr Biol; 2003 Apr; 192(3):191-201. PubMed ID: 12820664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The proximal convoluted tubule is a target for the uroguanylin-regulated natriuretic response.
    Elitsur N; Lorenz JN; Hawkins JA; Rudolph JA; Witte D; Yang LE; McDonough AA; Cohen MB
    J Pediatr Gastroenterol Nutr; 2006 Jul; 43 Suppl 1():S74-81. PubMed ID: 16819406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH.
    Zhang S; Eduljee C; Kwan DC; Kehl SJ; Fedida D
    Cell Biochem Biophys; 2005; 43(2):221-30. PubMed ID: 16049347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. K+ conductance activated during regulatory volume decrease. The channels in Ehrlich cells and their possible molecular counterpart.
    Niemeyer MI; Cid LP; Sepúlveda FV
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):565-75. PubMed ID: 11913467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two K(+)-selective conductances in single proximal tubule cells isolated from frog kidney are regulated by ATP.
    Robson L; Hunter M
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):605-16. PubMed ID: 9161979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium.
    Lionetto MG; Giordano ME; De Nuccio F; Nicolardi G; Hoffmann EK; Schettino T
    J Exp Biol; 2005 Feb; 208(Pt 4):749-60. PubMed ID: 15695766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.