These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1286148)

  • 1. Distance distribution in a dye-linked oligonucleotide determined by time-resolved fluorescence energy transfer.
    Hochstrasser RA; Chen SM; Millar DP
    Biophys Chem; 1992 Dec; 45(2):133-41. PubMed ID: 1286148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer.
    Eis PS; Millar DP
    Biochemistry; 1993 Dec; 32(50):13852-60. PubMed ID: 8268160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of fluorescence energy transfer in duplex and branched DNA molecules.
    Cooper JP; Hagerman PJ
    Biochemistry; 1990 Oct; 29(39):9261-8. PubMed ID: 2271593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
    Kupstat A; Ritschel T; Kumke MU
    Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template.
    Wang L; Gaigalas AK; Blasic J; Holden MJ; Gallagher DT; Pires R
    Biopolymers; 2003; 72(6):401-12. PubMed ID: 14587062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence energy transfer as a probe for nucleic acid structures and sequences.
    Mergny JL; Boutorine AS; Garestier T; Belloc F; Rougée M; Bulychev NV; Koshkin AA; Bourson J; Lebedev AV; Valeur B
    Nucleic Acids Res; 1994 Mar; 22(6):920-8. PubMed ID: 8152922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Donor-acceptor distance distributions in a double-labeled fluorescent oligonucleotide both as a single strand and in duplexes.
    Parkhurst KM; Parkhurst LJ
    Biochemistry; 1995 Jan; 34(1):293-300. PubMed ID: 7819210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer.
    Ghosh SS; Eis PS; Blumeyer K; Fearon K; Millar DP
    Nucleic Acids Res; 1994 Aug; 22(15):3155-9. PubMed ID: 8065930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance energy transfer in DNA duplexes labeled with localized dyes.
    Cunningham PD; Khachatrian A; Buckhout-White S; Deschamps JR; Goldman ER; Medintz IL; Melinger JS
    J Phys Chem B; 2014 Dec; 118(50):14555-65. PubMed ID: 25397906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence resonance energy transfer between specific-labeled sites on DNA.
    Ozaki H; McLaughlin LW
    Nucleic Acids Symp Ser; 1992; (27):67-8. PubMed ID: 1283917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational flexibility of three-way DNA junctions containing unpaired nucleotides.
    Yang M; Millar DP
    Biochemistry; 1996 Jun; 35(24):7959-67. PubMed ID: 8672499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction.
    Clegg RM; Murchie AI; Zechel A; Carlberg C; Diekmann S; Lilley DM
    Biochemistry; 1992 May; 31(20):4846-56. PubMed ID: 1591245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved fluorescence resonance energy transfer studies of DNA bending in double-stranded oligonucleotides and in DNA-protein complexes.
    Parkhurst LJ; Parkhurst KM; Powell R; Wu J; Williams S
    Biopolymers; 2001-2002; 61(3):180-200. PubMed ID: 11987180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer.
    Ozaki H; McLaughlin LW
    Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer and fluorescence quenching in complexes of polymethine dyes with human serum albumin.
    Tatikolov AS; Costa SM
    Photochem Photobiol; 2004; 80(2):250-6. PubMed ID: 15362936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of thermodynamic and kinetic parameters of DNA triple helix formation by fluorescence spectroscopy.
    Yang M; Ghosh SS; Millar DP
    Biochemistry; 1994 Dec; 33(51):15329-37. PubMed ID: 7803396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural study of DNA duplexes containing the (6-4) photoproduct by fluorescence resonance energy transfer.
    Mizukoshi T; Kodama TS; Fujiwara Y; Furuno T; Nakanishi M; Iwai S
    Nucleic Acids Res; 2001 Dec; 29(24):4948-54. PubMed ID: 11812824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA curvature in solution measured by fluorescence resonance energy transfer.
    Tóth K; Sauermann V; Langowski J
    Biochemistry; 1998 Jun; 37(22):8173-9. PubMed ID: 9609713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.