These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12861608)

  • 21. Poly(amino acid)-polyester graft copolymer nanoparticles for the acid-mediated release of doxorubicin.
    Price DJ; Khuphe M; Davies RPW; McLaughlan JR; Ingram N; Thornton PD
    Chem Commun (Camb); 2017 Aug; 53(62):8687-8690. PubMed ID: 28722060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable microparticles and nanoparticles by electrospraying techniques.
    Guarino V; Khodir WK; Ambrosio L
    J Appl Biomater Funct Mater; 2012; 10(3):191-6. PubMed ID: 23258557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable bromocryptine mesylate microspheres prepared by a solvent evaporation technique. I: Evaluation of formulation variables on microspheres characteristics for brain delivery.
    Arica B; Kaş HS; Orman MN; Hincal AA
    J Microencapsul; 2002; 19(4):473-84. PubMed ID: 12396384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of the effect of formulation parameters/variables to control the nanoencapsulation of hydrophilic drug via double emulsion technique.
    Ayoub M; Ahmed N; Kalaji N; Charcosset C; Magdy A; Fessi H; Elaissari A
    J Biomed Nanotechnol; 2011 Apr; 7(2):255-62. PubMed ID: 21702363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles.
    Thauvin C; Schwarz B; Delie F; Allémann E
    Int J Pharm; 2018 Sep; 548(2):771-777. PubMed ID: 29104059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergy between polymer crystallinity and nanoparticles size for payloads release.
    Niyom Y; Phakkeeree T; Flood A; Crespy D
    J Colloid Interface Sci; 2019 Aug; 550():139-146. PubMed ID: 31063872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of polymeric carriers for drug delivery with different shape and size using an electric jet.
    Enayati M; Ahmad Z; Stride E; Edirisinghe M
    Curr Pharm Biotechnol; 2009 Sep; 10(6):600-8. PubMed ID: 19619122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticles for paclitaxel delivery: a comparative study of different types of dendritic polyesters and their degradation behavior.
    Reul R; Renette T; Bege N; Kissel T
    Int J Pharm; 2011 Apr; 407(1-2):190-6. PubMed ID: 21256945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters.
    Dorati R; Genta I; Colzani B; Tripodo G; Conti B
    Drug Dev Ind Pharm; 2015; 41(7):1182-92. PubMed ID: 24994001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring of bioresorbable polymers for elaboration of sugar-functionalized nanoparticles.
    Cade D; Ramus E; Rinaudo M; Auzély-Velty R; Delair T; Hamaide T
    Biomacromolecules; 2004; 5(3):922-7. PubMed ID: 15132682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery.
    Avgoustakis K
    Curr Drug Deliv; 2004 Oct; 1(4):321-33. PubMed ID: 16305394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride.
    Ahmed OA; Zidan AS; Khayat M
    Int J Nanomedicine; 2016; 11():543-55. PubMed ID: 26893561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembled dual-drug loaded core-shell nanoparticles based on metal-free fully alternating polyester for cancer theranostics.
    Gupta PK; Pappuru S; Gupta S; Patra B; Chakraborty D; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():448-463. PubMed ID: 31029340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The preparation of PELGE-NP and a study of the factors affecting their diameter].
    Duan YR; Zhang ZR; Tang YG
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2005 Jan; 36(1):115-8. PubMed ID: 15702798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradable polyoxalate and copolyoxalate particles for drug-delivery applications.
    Hong D; Song B; Kim H; Kwon J; Khang G; Lee D
    Ther Deliv; 2011 Nov; 2(11):1407-17. PubMed ID: 22826873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design.
    Vuddanda PR; Mishra A; Singh SK; Singh S
    Pharm Dev Technol; 2015; 20(5):579-87. PubMed ID: 24831535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymeric drug nanoparticles prepared by an aerosol flow reactor method.
    Eerikäinen H; Kauppinen EI; Kansikas J
    Pharm Res; 2004 Jan; 21(1):136-43. PubMed ID: 14984268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(3-hydroxybutyrate-co-epsilon-caprolactone) copolymers and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-epsilon-caprolactone) terpolymers as novel materials for colloidal drug delivery systems.
    Pignatello R; Musumeci T; Impallomeni G; Carnemolla GM; Puglisi G; Ballistreri A
    Eur J Pharm Sci; 2009 Jun; 37(3-4):451-62. PubMed ID: 19504659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PLA micro- and nano-particles.
    Lee BK; Yun Y; Park K
    Adv Drug Deliv Rev; 2016 Dec; 107():176-191. PubMed ID: 27262925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.