BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12861655)

  • 1. [The LSP test for determining oscillation resistance of spinal implants].
    Schuh A; Lorenz S; Holzwarth U
    Biomed Tech (Berl); 2003 Jun; 48(6):162-5. PubMed ID: 12861655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants.
    Dick JC; Bourgeault CA
    Spine (Phila Pa 1976); 2001 Aug; 26(15):1668-72. PubMed ID: 11474353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.
    Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA
    J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of stainless steel and CP titanium rods for the anterior instrumentation of scoliosis.
    Haher T; Ottaviano D; Lapman P; Goldfarb B; Merola A; Valdevit A
    Biomed Mater Eng; 2004; 14(1):71-7. PubMed ID: 14757955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Titanium as an implant material for rods of transpedicular instrumentation of the lumbar spine].
    von Knoch M; Saxler G; Quint U
    Biomed Tech (Berl); 2004 May; 49(5):132-6. PubMed ID: 15212198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves?
    Serhan H; Mhatre D; Newton P; Giorgio P; Sturm P
    J Spinal Disord Tech; 2013 Apr; 26(2):E70-4. PubMed ID: 22832558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation.
    Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA
    J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of constrained dual-screw anchorage on holding strength and the resistance to cyclic loading in anterior spinal deformity surgery: a comparative biomechanical study.
    Koller H; Fierlbeck J; Auffarth A; Niederberger A; Stephan D; Hitzl W; Augat P; Zenner J; Blocher M; Blocher M; Resch H; Mayer M
    Spine (Phila Pa 1976); 2014 Mar; 39(6):E390-8. PubMed ID: 24384666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model.
    Wedemeyer M; Parent S; Mahar A; Odell T; Swimmer T; Newton P
    Spine (Phila Pa 1976); 2007 Jan; 32(1):42-8. PubMed ID: 17202891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of rod contouring on spinal construct fatigue strength.
    Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Residual particle free surfaces after shot peening in modular hip arthroplasty are feasible].
    Schuh A; Uter W; Holzwarth U; Kachler W; Göske J; Raab B; Mayerhöfer T
    Zentralbl Chir; 2005 Dec; 130(6):576-9. PubMed ID: 16382407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.
    Pienkowski D; Stephens GC; Doers TM; Hamilton DM
    Spine (Phila Pa 1976); 1998 Apr; 23(7):782-8. PubMed ID: 9563108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems: the importance of preload in ISO 12189.
    La Barbera L; Ottardi C; Villa T
    Spine J; 2015 Oct; 15(10):2290-6. PubMed ID: 26235467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the suitability of biodegradable rods for use in posterior lumbar fusion: An in-vitro biomechanical evaluation and finite element analysis.
    Tsuang FY; Hsieh YY; Kuo YJ; Chen CH; Lin FH; Chen CS; Chiang CJ
    PLoS One; 2017; 12(11):e0188034. PubMed ID: 29145437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical stability according to different configurations of screws and rods.
    Ha KY; Hwang SC; Whang TH
    J Spinal Disord Tech; 2013 May; 26(3):155-60. PubMed ID: 22105105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.
    Nguyen TQ; Buckley JM; Ames C; Deviren V
    Proc Inst Mech Eng H; 2011 Feb; 225(2):194-8. PubMed ID: 21428153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material failure in dynamic spine implants: are the standardized implant tests before market launch sufficient?
    Oikonomidis S; Sobottke R; Wilke HJ; Herren C; Beckmann A; Zarghooni K; Siewe J
    Eur Spine J; 2019 Apr; 28(4):872-882. PubMed ID: 30649613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving.
    Jindal S; Bansal R; Singh BP; Pandey R; Narayanan S; Wani MR; Singh V
    J Oral Implantol; 2014 Jul; 40 Spec No():347-55. PubMed ID: 25020216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical testing of a flexible fixation device for the lumbar spine.
    Leahy JC; Mathias KJ; Hukins DW; Shepherd DE; Deans WF
    Proc Inst Mech Eng H; 2000; 214(5):489-95. PubMed ID: 11109856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.