These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 12862445)
1. Structural analogues of the bimetallic reaction center in acetyl CoA synthase: a Ni--Ni model with bound CO. Linck RC; Spahn CW; Rauchfuss TB; Wilson SR J Am Chem Soc; 2003 Jul; 125(29):8700-1. PubMed ID: 12862445 [TBL] [Abstract][Full Text] [Related]
2. Structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme a synthase/CO dehydrogenase: binuclear sulfur-bridged Ni-Cu and Ni-Ni complexes and their reactions with CO. Harrop TC; Olmstead MM; Mascharak PK J Am Chem Soc; 2004 Nov; 126(45):14714-5. PubMed ID: 15535684 [TBL] [Abstract][Full Text] [Related]
3. A dinuclear nickel complex modeling of the Ni(d)(II)-Ni(p)(I) state of the active site of acetyl CoA synthase. Matsumoto T; Ito M; Kotera M; Tatsumi K Dalton Trans; 2010 Mar; 39(12):2995-7. PubMed ID: 20221531 [TBL] [Abstract][Full Text] [Related]
4. EPR and infrared spectroscopic evidence that a kinetically competent paramagnetic intermediate is formed when acetyl-coenzyme A synthase reacts with CO. George SJ; Seravalli J; Ragsdale SW J Am Chem Soc; 2005 Oct; 127(39):13500-1. PubMed ID: 16190705 [TBL] [Abstract][Full Text] [Related]
5. Structures and energetics of models for the active site of acetyl-coenzyme a synthase: role of distal and proximal metals in catalysis. Webster CE; Darensbourg MY; Lindahl PA; Hall MB J Am Chem Soc; 2004 Mar; 126(11):3410-1. PubMed ID: 15025453 [TBL] [Abstract][Full Text] [Related]
6. A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase. Amara P; Volbeda A; Fontecilla-Camps JC; Field MJ J Am Chem Soc; 2005 Mar; 127(8):2776-84. PubMed ID: 15725036 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic and computational studies of a Ni(+)-CO model complex: implications for the acetyl-CoA synthase catalytic mechanism. Craft JL; Mandimutsira BS; Fujita K; Riordan CG; Brunold TC Inorg Chem; 2003 Feb; 42(3):859-67. PubMed ID: 12562200 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper. Bramlett MR; Tan X; Lindahl PA J Am Chem Soc; 2003 Aug; 125(31):9316-7. PubMed ID: 12889960 [TBL] [Abstract][Full Text] [Related]
10. A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics. Green KN; Jeffery SP; Reibenspies JH; Darensbourg MY J Am Chem Soc; 2006 May; 128(19):6493-8. PubMed ID: 16683815 [TBL] [Abstract][Full Text] [Related]
11. Model Complexes for the Ni Bhandari A; Chandra Maji R; Mishra S; Kumar A; Barman SK; Das PP; Ghiassi KB; Olmstead MM; Patra AK Inorg Chem; 2018 Nov; 57(21):13713-13727. PubMed ID: 30339375 [TBL] [Abstract][Full Text] [Related]
12. Unraveling the structure and mechanism of acetyl-coenzyme A synthase. Hegg EL Acc Chem Res; 2004 Oct; 37(10):775-83. PubMed ID: 15491124 [TBL] [Abstract][Full Text] [Related]
13. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase. Manesis AC; O'Connor MJ; Schneider CR; Shafaat HS J Am Chem Soc; 2017 Aug; 139(30):10328-10338. PubMed ID: 28675928 [TBL] [Abstract][Full Text] [Related]
14. Thiolate-bridged nickel-copper complexes: a binuclear model for the catalytic site of acetyl coenzyme a synthase? Krishnan R; Voo JK; Riordan CG; Zahkarov L; Rheingold AL J Am Chem Soc; 2003 Apr; 125(15):4422-3. PubMed ID: 12683803 [TBL] [Abstract][Full Text] [Related]
15. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase. Li Z; Ohki Y; Tatsumi K J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562 [TBL] [Abstract][Full Text] [Related]
16. Density functional calculations on the conversion of azide and carbon monoxide to isocyanate and dinitrogen by a nickel to sulfur rebound mechanism. Fan Y; Hall MB Chemistry; 2004 Apr; 10(7):1805-14. PubMed ID: 15054768 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and computational studies on [Ni(tmc)CH3]OTf: implications for Ni-methyl bonding in the A cluster of acetyl-CoA synthase. Schenker R; Mock MT; Kieber-Emmons MT; Riordan CG; Brunold TC Inorg Chem; 2005 May; 44(10):3605-17. PubMed ID: 15877445 [TBL] [Abstract][Full Text] [Related]
18. Mononuclear Ni(III)-alkyl complexes (alkyl = Me and Et): relevance to the acetyl-CoA synthase and methyl-CoM reductase. Lee CM; Chen CH; Liao FX; Hu CH; Lee GH J Am Chem Soc; 2010 Jul; 132(27):9256-8. PubMed ID: 20568755 [TBL] [Abstract][Full Text] [Related]
19. Infrared and EPR spectroscopic characterization of a Ni(I) species formed by photolysis of a catalytically competent Ni(I)-CO intermediate in the acetyl-CoA synthase reaction. Bender G; Stich TA; Yan L; Britt RD; Cramer SP; Ragsdale SW Biochemistry; 2010 Sep; 49(35):7516-23. PubMed ID: 20669901 [TBL] [Abstract][Full Text] [Related]
20. Structural models for the active site of acetyl-CoA synthase: synthesis of dinuclear nickel complexes having thiolate, isocyanide, and thiourea on the Ni(p) site. Ito M; Kotera M; Song Y; Matsumoto T; Tatsumi K Inorg Chem; 2009 Feb; 48(3):1250-6. PubMed ID: 19128153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]