These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12862453)

  • 41. Effect of charge transfer bands on the photo-induced DNA cleavage activity of [1-(2-thiazolylazo)-2-naphtholato]copper(II) complexes.
    Dhar S; Nethaji M; Chakravarty AR
    J Inorg Biochem; 2005 Mar; 99(3):805-12. PubMed ID: 15708802
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidation of p-chlorotoluene and cyclohexene catalysed by polymer-anchored oxovanadium(IV) and copper(II) complexes of amino acid derived tridentate ligands.
    Maurya MR; Kumar M; Kumar A; Costa Pessoa J
    Dalton Trans; 2008 Aug; (32):4220-32. PubMed ID: 18682861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ternary copper complexes for photocleavage of DNA by red light: direct evidence for sulfur-to-copper charge transfer and d-d band involvement.
    Dhar S; Senapati D; Das PK; Chattopadhyay P; Nethaji M; Chakravarty AR
    J Am Chem Soc; 2003 Oct; 125(40):12118-24. PubMed ID: 14518998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols.
    Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M
    Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419
    [TBL] [Abstract][Full Text] [Related]  

  • 45. (N-Benzyl-bis-N',N''-salicylidene)-cis-1,3,5-triaminocyclohexane copper(II): a novel catalyst for the aerobic oxidation of benzyl alcohol.
    Nairn AK; Archibald SJ; Bhalla R; Gilbert BC; Maclean EJ; Teat SJ; Walton PH
    Dalton Trans; 2006 Jan; (1):172-6. PubMed ID: 16357974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Syntheses, characterization, and dioxygen reactivities of Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives: a Cu(III)2O2 intermediate exhibiting higher C-H activation.
    Kajita Y; Arii H; Saito T; Saito Y; Nagatomo S; Kitagawa T; Funahashi Y; Ozawa T; Masuda H
    Inorg Chem; 2007 Apr; 46(8):3322-35. PubMed ID: 17371011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dioxygen reactivity of copper and heme-copper complexes possessing an imidazole-phenol cross-link.
    Kim E; Kamaraj K; Galliker B; Rubie ND; Moënne-Loccoz P; Kaderli S; Zuberbühler AD; Karlin KD
    Inorg Chem; 2005 Mar; 44(5):1238-47. PubMed ID: 15732964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomimetic hydrocarbon oxidation catalyzed by nonheme iron(III) complexes with peracids: evidence for an Fe(V)=O species.
    Lee SH; Han JH; Kwak H; Lee SJ; Lee EY; Kim HJ; Lee JH; Bae C; Lee SN; Kim Y; Kim C
    Chemistry; 2007; 13(33):9393-8. PubMed ID: 17685379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Valence-state analysis through spectroelectrochemistry in a series of quinonoid-bridged diruthenium complexes [(acac)(2)Ru(mu-L)Ru(acac)(2)](n) (n=+2, +1, 0, -1, -2).
    Ghumaan S; Sarkar B; Maji S; Puranik VG; Fiedler J; Urbanos FA; Jimenez-Aparicio R; Kaim W; Lahiri GK
    Chemistry; 2008; 14(34):10816-28. PubMed ID: 18924186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2009 May; (17):3286-97. PubMed ID: 19421631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits.
    Takahashi K; Klinman JP
    Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfanyl stabilization of copper-bonded phenoxyls in model complexes and galactose oxidase.
    Verma P; Pratt RC; Storr T; Wasinger EC; Stack TD
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18600-5. PubMed ID: 22065750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unexpected kinetic complexity in the formation of a nonheme oxoiron(IV) complex.
    Shan X; Que L
    Chem Commun (Camb); 2008 May; (19):2209-11. PubMed ID: 18463742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinguishing rate-limiting electron versus H-atom transfers in Cu2O2-mediated oxidative N-dealkylations: application of inter- versus intramolecular kinetic isotope effects.
    Shearer J; Zhang CX; Hatcher LQ; Karlin KD
    J Am Chem Soc; 2003 Oct; 125(42):12670-1. PubMed ID: 14558790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanistic studies of the tellurium(II)/tellurium(IV) redox cycle in thiol peroxidase-like reactions of diorganotellurides in methanol.
    You Y; Ahsan K; Detty MR
    J Am Chem Soc; 2003 Apr; 125(16):4918-27. PubMed ID: 12696911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Syntheses, structural analyses and redox kinetics of four-coordinate [CuL2]2+ and five-coordinate [CuL2(solvent)]2+ complexes (L = 6,6'-dimethyl-2,2'-bipyridine or 2,9-dimethyl-1,10-phenanthroline): completely gated reduction reaction of [Cu(dmp)2]2+ in nitromethane.
    Itoh S; Kishikawa N; Suzuki T; Takagi HD
    Dalton Trans; 2005 Mar; (6):1066-78. PubMed ID: 15739009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphate diester hydrolysis and DNA damage promoted by new cis-aqua/hydroxy copper(II) complexes containing tridentate imidazole-rich ligands.
    Scarpellini M; Neves A; Hörner R; Bortoluzzi AJ; Szpoganics B; Zucco C; Nome Silva RA; Drago V; Mangrich AS; Ortiz WA; Passos WA; de Oliveira MC; Terenzi H
    Inorg Chem; 2003 Dec; 42(25):8353-65. PubMed ID: 14658888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase.
    Palavicini S; Granata A; Monzani E; Casella L
    J Am Chem Soc; 2005 Dec; 127(51):18031-6. PubMed ID: 16366554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidations of NADH analogues by cis-[RuIV(bpy)2(py)(O)]2+ occur by hydrogen-atom transfer rather than by hydride transfer.
    Matsuo T; Mayer JM
    Inorg Chem; 2005 Apr; 44(7):2150-8. PubMed ID: 15792449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pore diffusion model for a two-substrate enzymatic reaction: application to galactose oxidase immobilized on porous glass particles.
    Dahodwala SK; Humphrey AE
    Biotechnol Bioeng; 1976 Jul; 18(7):987-1000. PubMed ID: 953165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.