These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 12865076)

  • 1. Molecular and mechanical bases of focal lipid accumulation in arterial wall.
    Chien S
    Prog Biophys Mol Biol; 2003 Oct; 83(2):131-51. PubMed ID: 12865076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of rheological modulation of endothelial functions: importance of stress direction.
    Chien S
    Biorheology; 2006; 43(2):95-116. PubMed ID: 16687781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of integrins in endothelial mechanosensing of shear stress.
    Shyy JY; Chien S
    Circ Res; 2002 Nov; 91(9):769-75. PubMed ID: 12411390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of shear stress direction in endothelial mechanotransduction.
    Chien S
    Mol Cell Biomech; 2008 Mar; 5(1):1-8. PubMed ID: 18524241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.
    Yamamoto K; Ando J
    Am J Physiol Heart Circ Physiol; 2015 Oct; 309(7):H1178-85. PubMed ID: 26297225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of disturbed flow on endothelial cells.
    Chien S
    Ann Biomed Eng; 2008 Apr; 36(4):554-62. PubMed ID: 18172767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Role of Plasma Membranes in Vascular Endothelial Mechanosensing.
    Yamamoto K; Ando J
    Circ J; 2018 Oct; 82(11):2691-2698. PubMed ID: 30282847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular mechanics and gene expression in blood vessels.
    Lehoux S; Tedgui A
    J Biomech; 2003 May; 36(5):631-43. PubMed ID: 12694993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid shear stress and the vascular endothelium: for better and for worse.
    Resnick N; Yahav H; Shay-Salit A; Shushy M; Schubert S; Zilberman LC; Wofovitz E
    Prog Biophys Mol Biol; 2003 Apr; 81(3):177-99. PubMed ID: 12732261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of mechanotransduction pathways.
    Labrador V; Chen KD; Li YS; Muller S; Stoltz JF; Chien S
    Biorheology; 2003; 40(1-3):47-52. PubMed ID: 12454386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium.
    Helmke BP; Davies PF
    Ann Biomed Eng; 2002 Mar; 30(3):284-96. PubMed ID: 12051614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.
    Berk BC; Corson MA; Peterson TE; Tseng H
    J Biomech; 1995 Dec; 28(12):1439-50. PubMed ID: 8666584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.
    Yamamoto K; Ando J
    J Cell Sci; 2013 Mar; 126(Pt 5):1227-34. PubMed ID: 23378020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cis-acting phorbol ester "12-O-tetradecanoylphorbol 13-acetate"-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression.
    Shyy JY; Lin MC; Han J; Lu Y; Petrime M; Chien S
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):8069-73. PubMed ID: 7644539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanotransduction in endothelial responses to shear stress: review of work in Dr. Chien's laboratory.
    Shyy JY
    Biorheology; 2001; 38(2-3):109-17. PubMed ID: 11381169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress.
    Takahashi M; Ishida T; Traub O; Corson MA; Berk BC
    J Vasc Res; 1997; 34(3):212-9. PubMed ID: 9226303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms.
    Blackman BR; García-Cardeña G; Gimbrone MA
    J Biomech Eng; 2002 Aug; 124(4):397-407. PubMed ID: 12188206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.
    Gojova A; Barakat AI
    J Appl Physiol (1985); 2005 Jun; 98(6):2355-62. PubMed ID: 15705727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force.
    Traub O; Berk BC
    Arterioscler Thromb Vasc Biol; 1998 May; 18(5):677-85. PubMed ID: 9598824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of PKC-epsilon and ERK1/2 participates in shear-induced endothelial MCP-1 expression that is repressed by nitric oxide.
    Ni CW; Wang DL; Lien SC; Cheng JJ; Chao YJ; Hsieh HJ
    J Cell Physiol; 2003 Jun; 195(3):428-34. PubMed ID: 12704652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.