BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12865844)

  • 1. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty.
    Belkoff SM; Molloy S
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1555-9. PubMed ID: 12865844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo temperature profile of intervertebral discs and vertebral endplates during vertebroplasty: an experimental study in sheep.
    Aebli N; Goss BG; Thorpe P; Williams R; Krebs J
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1674-8; discussion 1679. PubMed ID: 16816761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty.
    Molloy S; Mathis JM; Belkoff SM
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1549-54. PubMed ID: 12865843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae.
    Higgins KB; Harten RD; Langrana NA; Reiter MF
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1540-7; discussion 1548. PubMed ID: 12865841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: an in vivo study in humans.
    Anselmetti GC; Manca A; Kanika K; Murphy K; Eminefendic H; Masala S; Regge D
    Cardiovasc Intervent Radiol; 2009 May; 32(3):491-8. PubMed ID: 19280257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate.
    Togawa D; Bauer TW; Lieberman IH; Takikawa S
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1521-7. PubMed ID: 12865838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical analysis of intravertebral pressures during vertebroplasty of cadaveric spines with and without simulated metastases.
    Reidy D; Ahn H; Mousavi P; Finkelstein J; Whyne CM
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1534-9. PubMed ID: 12865840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ex vivo exothermal and mechanical evaluation of two-solution bone cements in vertebroplasty.
    Rodrigues DC; Ordway NR; Ma CR; Fayyazi AH; Hasenwinkel JM
    Spine J; 2011 May; 11(5):432-9. PubMed ID: 21481652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical behavior of MRI-signal-inducing bone cements after vertebroplasty in osteoporotic vertebral bodies: An experimental cadaver study.
    Wichlas F; Trzenschik H; Tsitsilonis S; Rohlmann A; Bail HJ
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):571-6. PubMed ID: 24703828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cement leakage causes potential thermal injury in vertebroplasty.
    Lai PL; Tai CL; Chen LH; Nien NY
    BMC Musculoskelet Disord; 2011 May; 12():116. PubMed ID: 21615939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement.
    Belkoff SM; Sanders JC; Jasper LE
    J Biomed Mater Res; 2002; 63(4):396-9. PubMed ID: 12115746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pulsed jet lavage in vertebroplasty on injection forces of polymethylmethacrylate bone cement, material distribution, and potential fat embolism: a cadaver study.
    Benneker LM; Heini PF; Suhm N; Gisep A
    Spine (Phila Pa 1976); 2008 Nov; 33(23):E906-10. PubMed ID: 18978585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of percutaneous vertebroplasty in the treatment of intravertebral pseudarthrosis associated with noninfected avascular necrosis of the vertebral body.
    Jang JS; Kim DY; Lee SH
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1588-92. PubMed ID: 12865850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone.
    Arens D; Rothstock S; Windolf M; Boger A
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration.
    Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: effects of cement distribution patterns and volume.
    Tschirhart CE; Roth SE; Whyne CM
    J Biomech; 2005 Aug; 38(8):1582-90. PubMed ID: 15958214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertebroplasty in the treatment of back pain.
    Muto M; Muto E; Izzo R; Diano AA; Lavanga A; Di Furia U
    Radiol Med; 2005 Mar; 109(3):208-19. PubMed ID: 15775889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midterm follow-up of vertebral geometry and remodeling of the vertebral bidisk unit (VDU) after percutaneous vertebroplasty of osteoporotic vertebral fractures.
    Pitton MB; Koch U; Drees P; Düber C
    Cardiovasc Intervent Radiol; 2009 Sep; 32(5):1004-10. PubMed ID: 19221837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat distribution of polymerisation temperature of bone cement on the spinal canal during vertebroplasty.
    Wegener B; Zolyniak N; Gülecyüz MF; Büttner A; von Schulze Pellengahr C; Schaffer V; Jansson V; Birkenmaier C
    Int Orthop; 2012 May; 36(5):1025-30. PubMed ID: 22038442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.