These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 12865893)
1. The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice. Uz T; Akhisaroglu M; Ahmed R; Manev H Neuropsychopharmacology; 2003 Dec; 28(12):2117-23. PubMed ID: 12865893 [TBL] [Abstract][Full Text] [Related]
2. Diurnal rhythms in cocaine sensitization and in Period1 levels are common across rodent species. Akhisaroglu M; Ahmed R; Kurtuncu M; Manev H; Uz T Pharmacol Biochem Behav; 2004 Sep; 79(1):37-42. PubMed ID: 15388282 [TBL] [Abstract][Full Text] [Related]
3. Involvement of the pineal gland in diurnal cocaine reward in mice. Kurtuncu M; Arslan AD; Akhisaroglu M; Manev H; Uz T Eur J Pharmacol; 2004 Apr; 489(3):203-5. PubMed ID: 15087244 [TBL] [Abstract][Full Text] [Related]
5. Pineal melatonin synthesis is altered in Period1 deficient mice. Christ E; Pfeffer M; Korf HW; von Gall C Neuroscience; 2010 Dec; 171(2):398-406. PubMed ID: 20849936 [TBL] [Abstract][Full Text] [Related]
6. Tetrodotoxin administration in the suprachiasmatic nucleus prevents NMDA-induced reductions in pineal melatonin without influencing Per1 and Per2 mRNA levels. Paul KN; Gamble KL; Fukuhara C; Novak CM; Tosini G; Albers HE Eur J Neurosci; 2004 May; 19(10):2808-14. PubMed ID: 15147314 [TBL] [Abstract][Full Text] [Related]
7. Clock gene mRNA and protein rhythms in the pineal gland of mice. Karolczak M; Burbach GJ; Sties G; Korf HW; Stehle JH Eur J Neurosci; 2004 Jun; 19(12):3382-8. PubMed ID: 15217395 [TBL] [Abstract][Full Text] [Related]
8. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland. Fukuhara C Brain Res Mol Brain Res; 2004 Nov; 130(1-2):109-14. PubMed ID: 15519681 [TBL] [Abstract][Full Text] [Related]
9. Diurnal variation in CREB phosphorylation and PER1 protein levels in lactotroph cells of melatonin-proficient C3H and melatonin-deficient C57BL mice: similarities and differences. Sheynzon P; Karolczak M; Dehghani F; Korf HW Cell Tissue Res; 2005 Aug; 321(2):211-7. PubMed ID: 15947965 [TBL] [Abstract][Full Text] [Related]
10. Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. Fahrenkrug J; Hannibal J; Georg B J Neuroendocrinol; 2008 Mar; 20(3):323-9. PubMed ID: 18208549 [TBL] [Abstract][Full Text] [Related]
11. Circadian differences in behavioral sensitization to cocaine: putative role of arylalkylamine N-acetyltransferase. Uz T; Javaid JI; Manev H Life Sci; 2002 May; 70(25):3069-75. PubMed ID: 12138020 [TBL] [Abstract][Full Text] [Related]
12. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. Torres-Farfan C; Serón-Ferré M; Dinet V; Korf HW J Pineal Res; 2006 Jan; 40(1):64-70. PubMed ID: 16313500 [TBL] [Abstract][Full Text] [Related]
13. Modulatory effects of 5-fluorouracil on the rhythmic expression of circadian clock genes: a possible mechanism of chemotherapy-induced circadian rhythm disturbances. Terazono H; Hamdan A; Matsunaga N; Hayasaka N; Kaji H; Egawa T; Makino K; Shigeyoshi Y; Koyanagi S; Ohdo S Biochem Pharmacol; 2008 Apr; 75(8):1616-22. PubMed ID: 18329632 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. Chilov D; Hofer T; Bauer C; Wenger RH; Gassmann M FASEB J; 2001 Dec; 15(14):2613-22. PubMed ID: 11726537 [TBL] [Abstract][Full Text] [Related]
15. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. Rawashdeh O; Jilg A; Maronde E; Fahrenkrug J; Stehle JH J Neurochem; 2016 Sep; 138(5):731-45. PubMed ID: 27246400 [TBL] [Abstract][Full Text] [Related]
16. Effect of long-term exposure to constant dim light on the circadian system of rats. Fukuhara C; Aguzzi J; Bullock N; Tosini G Neurosignals; 2005; 14(3):117-25. PubMed ID: 16088226 [TBL] [Abstract][Full Text] [Related]
17. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. von Gall C; Garabette ML; Kell CA; Frenzel S; Dehghani F; Schumm-Draeger PM; Weaver DR; Korf HW; Hastings MH; Stehle JH Nat Neurosci; 2002 Mar; 5(3):234-8. PubMed ID: 11836530 [TBL] [Abstract][Full Text] [Related]
18. Differential adrenergic regulation of the circadian expression of the clock genes Period1 and Period2 in the rat pineal gland. Takekida S; Yan L; Maywood ES; Hastings MH; Okamura H Eur J Neurosci; 2000 Dec; 12(12):4557-61. PubMed ID: 11122368 [TBL] [Abstract][Full Text] [Related]
19. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Abarca C; Albrecht U; Spanagel R Proc Natl Acad Sci U S A; 2002 Jun; 99(13):9026-30. PubMed ID: 12084940 [TBL] [Abstract][Full Text] [Related]
20. Light and food signals cooperate to entrain the rat pineal circadian system. Wu T; Jin Y; Kato H; Fu Z J Neurosci Res; 2008 Nov; 86(14):3246-55. PubMed ID: 18627026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]