BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12866046)

  • 1. Deciphering a novel thioredoxin-like fold family.
    Kinch LN; Baker D; Grishin NV
    Proteins; 2003 Aug; 52(3):323-31. PubMed ID: 12866046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural classification of thioredoxin-like fold proteins.
    Qi Y; Grishin NV
    Proteins; 2005 Feb; 58(2):376-88. PubMed ID: 15558583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases.
    Fetrow JS; Skolnick J
    J Mol Biol; 1998 Sep; 281(5):949-68. PubMed ID: 9719646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional characterization of a thioredoxin-like protein (Mt0807) from Methanobacterium thermoautotrophicum.
    Amegbey GY; Monzavi H; Habibi-Nazhad B; Bhattacharyya S; Wishart DS
    Biochemistry; 2003 Jul; 42(26):8001-10. PubMed ID: 12834352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity.
    Fetrow JS; Godzik A; Skolnick J
    J Mol Biol; 1998 Oct; 282(4):703-11. PubMed ID: 9743619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins.
    Su D; Berndt C; Fomenko DE; Holmgren A; Gladyshev VN
    Biochemistry; 2007 Jun; 46(23):6903-10. PubMed ID: 17503777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human SH3BGRL protein: the first structure of the human SH3BGR family representing a novel class of thioredoxin fold proteins.
    Yin L; Xiang Y; Zhu DY; Yan N; Huang RH; Zhang Y; Wang DC
    Proteins; 2005 Oct; 61(1):213-6. PubMed ID: 16080146
    [No Abstract]   [Full Text] [Related]  

  • 8. Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity.
    Kinch LN; Grishin NV
    Proteins; 2002 Jul; 48(1):75-84. PubMed ID: 12012339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NrdH-redoxin of Corynebacterium ammoniagenes forms a domain-swapped dimer.
    Stehr M; Lindqvist Y
    Proteins; 2004 May; 55(3):613-9. PubMed ID: 15103625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oxidized subunit B8 from human complex I adopts a thioredoxin fold.
    Brockmann C; Diehl A; Rehbein K; Strauss H; Schmieder P; Korn B; Kühne R; Oschkinat H
    Structure; 2004 Sep; 12(9):1645-54. PubMed ID: 15341729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor.
    Copley SD; Novak WR; Babbitt PC
    Biochemistry; 2004 Nov; 43(44):13981-95. PubMed ID: 15518547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif.
    Acher FC; Bertrand HO
    Biopolymers; 2005; 80(2-3):357-66. PubMed ID: 15810013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily.
    Schröder E; Ponting CP
    Protein Sci; 1998 Nov; 7(11):2465-8. PubMed ID: 9828014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus.
    Yeh AP; Chatelet C; Soltis SM; Kuhn P; Meyer J; Rees DC
    J Mol Biol; 2000 Jul; 300(3):587-95. PubMed ID: 10884354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional relations among thioredoxins of different species.
    Eklund H; Gleason FK; Holmgren A
    Proteins; 1991; 11(1):13-28. PubMed ID: 1961698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Fasciola hepatica thioredoxin: High resolution structure reveals two oxidation states.
    Line K; Isupov MN; Garcia-Rodriguez E; Maggioli G; Parra F; Littlechild JA
    Mol Biochem Parasitol; 2008 Sep; 161(1):44-8. PubMed ID: 18620002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin.
    Roos G; Garcia-Pino A; Van Belle K; Brosens E; Wahni K; Vandenbussche G; Wyns L; Loris R; Messens J
    J Mol Biol; 2007 May; 368(3):800-11. PubMed ID: 17368484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the glutaredoxin-like protein SH3BGRL3 at 1.6 Angstrom resolution.
    Nardini M; Mazzocco M; Massaro A; Maffei M; Vergano A; Donadini A; Scartezzini P; Bolognesi M
    Biochem Biophys Res Commun; 2004 May; 318(2):470-6. PubMed ID: 15120624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.