BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12866046)

  • 21. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling.
    Petrey D; Xiang Z; Tang CL; Xie L; Gimpelev M; Mitros T; Soto CS; Goldsmith-Fischman S; Kernytsky A; Schlessinger A; Koh IY; Alexov E; Honig B
    Proteins; 2003; 53 Suppl 6():430-5. PubMed ID: 14579332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The thioredoxin-like fold: hidden domains in protein disulfide isomerases and other chaperone proteins.
    Clissold PM; Bicknell R
    Bioessays; 2003 Jun; 25(6):603-11. PubMed ID: 12766950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmodium falciparum glutaredoxin-like proteins.
    Deponte M; Becker K; Rahlfs S
    Biol Chem; 2005 Jan; 386(1):33-40. PubMed ID: 15843145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural elements responsible for transglutaminase activity of protein disulphide isomerases and thioredoxins.
    Blaskó B; Mádi A; Fésüs L
    J Biol Regul Homeost Agents; 2004; 18(1):1-8. PubMed ID: 15323354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution structure of recombinant Trichomonas vaginalis thioredoxin.
    Iulek J; Alphey MS; Westrop GD; Coombs GH; Hunter WN
    Acta Crystallogr D Biol Crystallogr; 2006 Feb; 62(Pt 2):216-20. PubMed ID: 16421453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes.
    Kiel C; Serrano L
    J Mol Biol; 2006 Jan; 355(4):821-44. PubMed ID: 16310215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient recognition of protein fold at low sequence identity by conservative application of Psi-BLAST: application.
    Stevens FJ; Kuemmel C; Babnigg G; Collart FR
    J Mol Recognit; 2005; 18(2):150-7. PubMed ID: 15593246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The emergence of catalytic and structural diversity within the beta-clip fold.
    Iyer LM; Aravind L
    Proteins; 2004 Jun; 55(4):977-91. PubMed ID: 15146494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of Mycobacterium tuberculosis thioredoxin C.
    Hall G; Shah M; McEwan PA; Laughton C; Stevens M; Westwell A; Emsley J
    Acta Crystallogr D Biol Crystallogr; 2006 Dec; 62(Pt 12):1453-7. PubMed ID: 17139080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The crystal structure of Mycobacterium tuberculosis NrdH at 0.87 Å suggests a possible mode of its activity.
    Phulera S; Mande SC
    Biochemistry; 2013 Jun; 52(23):4056-65. PubMed ID: 23675692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis.
    Skowronek KJ; Kosinski J; Bujnicki JM
    Proteins; 2006 Jun; 63(4):1059-68. PubMed ID: 16498623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical characterization and crystal structure of a Dim1 family associated protein: Dim2.
    Simeoni F; Arvai A; Bello P; Gondeau C; Hopfner KP; Neyroz P; Heitz F; Tainer J; Divita G
    Biochemistry; 2005 Sep; 44(36):11997-2008. PubMed ID: 16142897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence comparison and protein structure prediction.
    Dunbrack RL
    Curr Opin Struct Biol; 2006 Jun; 16(3):374-84. PubMed ID: 16713709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solution structure of the C-terminal DUF1000 domain of the human thioredoxin-like 1 protein.
    Goroncy AK; Koshiba S; Tochio N; Tomizawa T; Inoue M; Tanaka A; Sugano S; Kigawa T; Yokoyama S
    Proteins; 2010 Jul; 78(9):2176-80. PubMed ID: 20455272
    [No Abstract]   [Full Text] [Related]  

  • 35. Novel use of a genetic algorithm for protein structure prediction: searching template and sequence alignment space.
    Contreras-Moreira B; Fitzjohn PW; Offman M; Smith GR; Bates PA
    Proteins; 2003; 53 Suppl 6():424-9. PubMed ID: 14579331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of the periplasmic thiol-disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation.
    Carius Y; Rother D; Friedrich CG; Scheidig AJ
    Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):229-40. PubMed ID: 19237745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FRalanyzer: a tool for functional analysis of fold-recognition sequence-structure alignments.
    Saini HK; Fischer D
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W499-502. PubMed ID: 17537819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin.
    Maeda K; Hägglund P; Finnie C; Svensson B; Henriksen A
    Structure; 2006 Nov; 14(11):1701-10. PubMed ID: 17098195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein structure mining using a structural alphabet.
    Tyagi M; de Brevern AG; Srinivasan N; Offmann B
    Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.