BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12866619)

  • 1. Mathematical modeling of Saccharomyces cerevisiae inactivation under high-pressure carbon dioxide.
    Erkmen O
    Nahrung; 2003 Jun; 47(3):176-80. PubMed ID: 12866619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of Escherichia coli inactivation under high-pressure carbon dioxide.
    Erkmen O
    J Biosci Bioeng; 2001; 92(1):39-43. PubMed ID: 16233055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the inactivation of Salmonella typhimurium by dense phase carbon dioxide in carrot juice.
    Liao H; Kong X; Zhang Z; Liao X; Hu X
    Food Microbiol; 2010 Feb; 27(1):94-100. PubMed ID: 19913698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of inactivation kinetics of Escherichia coli by dense phase carbon dioxide.
    Liao H; Zhang Y; Hu X; Liao X; Wu J
    Int J Food Microbiol; 2008 Aug; 126(1-2):93-7. PubMed ID: 18565607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic modeling of S. cerevisiae inactivation by supercritical CO2.
    Spilimbergo S; Mantoan D
    Biotechnol Prog; 2005; 21(5):1461-5. PubMed ID: 16209551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide.
    Liao H; Hu X; Liao X; Chen F; Wu J
    Int J Food Microbiol; 2007 Sep; 118(2):126-31. PubMed ID: 17689768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to predicting microbial inactivation kinetics during high pressure processing.
    Koseki S; Yamamoto K
    Int J Food Microbiol; 2007 May; 116(2):275-82. PubMed ID: 17363099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum at subzero temperatures.
    Perrier-Cornet JM; Tapin S; Gaeta S; Gervais P
    J Biotechnol; 2005 Feb; 115(4):405-12. PubMed ID: 15639102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment.
    Garcia-Gonzalez L; Geeraerd AH; Mast J; Briers Y; Elst K; Van Ginneken L; Van Impe JF; Devlieghere F
    Food Microbiol; 2010 Jun; 27(4):541-9. PubMed ID: 20417405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of Pediococcus damnosus in phosphate buffer and gilt-head seabream (Sparus aurata).
    Panagou EZ; Tassou CC; Manitsa C; Mallidis C
    J Appl Microbiol; 2007 Jun; 102(6):1499-507. PubMed ID: 17578414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide.
    Kim SR; Rhee MS; Kim BC; Kim KH
    Int J Food Microbiol; 2007 Aug; 118(1):52-61. PubMed ID: 17604865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure.
    Guan D; Chen H; Hoover DG
    Int J Food Microbiol; 2005 Oct; 104(2):145-53. PubMed ID: 16099523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium.
    Tassou CC; Panagou EZ; Samaras FJ; Galiatsatou P; Mallidis CG
    J Appl Microbiol; 2008 Jun; 104(6):1764-73. PubMed ID: 18298540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial inactivation kinetics during high-pressure carbon dioxide treatment: nonlinear model for the combined effect of temperature and pressure in apple juice.
    Ferrentino G; Ferrari G; Poletto M; Balaban MO
    J Food Sci; 2008 Oct; 73(8):E389-95. PubMed ID: 19019111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of apple pectin methylesterase induced by dense phase carbon dioxide.
    Zhi X; Zhang Y; Hu X; Wu J; Liao X
    J Agric Food Chem; 2008 Jul; 56(13):5394-400. PubMed ID: 18540616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide inhibition of yeast growth in biomass production.
    Chen SL; Gutmains F
    Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk.
    Chen H
    Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hyperbaric stress on yeast morphology: study by automated image analysis.
    Coelho MA; Belo I; Pinheiro R; Amaral AL; Mota M; Coutinho JA; Ferreira EC
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):318-24. PubMed ID: 15257421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature.
    Yang ZQ; Jiao XA; Li P; Pan ZM; Huang JL; Gu RX; Fang WM; Chao GX
    Food Microbiol; 2009 Sep; 26(6):606-14. PubMed ID: 19527836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.