These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 12866789)

  • 1. Trans-species transfer of Wolbachia: microinjection of Wolbachia from litomosoides sigmodontis into Acanthocheilonema viteae.
    Hartmann N; Stuckas H; Lucius R; Bleiss W; Theuring F; Kalinna BH
    Parasitology; 2003 Jun; 126(Pt 6):503-11. PubMed ID: 12866789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution.
    Casiraghi M; Bain O; Guerrero R; Martin C; Pocacqua V; Gardner SL; Franceschi A; Bandi C
    Int J Parasitol; 2004 Feb; 34(2):191-203. PubMed ID: 15037105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time PCR for quantification of the bacterial endosymbionts (Wolbachia) of filarial nematodes.
    Simoncini L; Casiraghi M; Bazzocchi C; Sacchi L; Bandi C; Genchi C
    Parassitologia; 2001 Dec; 43(4):173-8. PubMed ID: 12402526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential display of genes expressed in the filarial nematode Litomosoides sigmodontis reveals a putative phosphate permease up-regulated after depletion of Wolbachia endobacteria.
    Heider U; Blaxter M; Hoerauf A; Pfarr KM
    Int J Med Microbiol; 2006 Aug; 296(4-5):287-99. PubMed ID: 16616613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of a filarial phosphate permease that is up-regulated in response to depletion of essential Wolbachia endobacteria.
    Arumugam S; Hoerauf A; Pfarr KM
    Exp Parasitol; 2014 Mar; 138():30-9. PubMed ID: 24480589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes.
    Strübing U; Lucius R; Hoerauf A; Pfarr KM
    Int J Parasitol; 2010 Aug; 40(10):1193-202. PubMed ID: 20362581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility.
    Hoerauf A; Nissen-Pähle K; Schmetz C; Henkle-Dührsen K; Blaxter ML; Büttner DW; Gallin MY; Al-Qaoud KM; Lucius R; Fleischer B
    J Clin Invest; 1999 Jan; 103(1):11-8. PubMed ID: 9884329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The filarial endosymbiont Wolbachia sp. is absent from Setaria equina.
    Chirgwin SR; Porthouse KH; Nowling JM; Klei TR
    J Parasitol; 2002 Dec; 88(6):1248-50. PubMed ID: 12537121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin.
    Hoerauf A; Volkmann L; Nissen-Paehle K; Schmetz C; Autenrieth I; Büttner DW; Fleischer B
    Trop Med Int Health; 2000 Apr; 5(4):275-9. PubMed ID: 10810023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of the Filarial Endosymbiont Wolbachia in Seal Heartworm (Acanthocheilonema spirocauda) but Evidence of Ancient Lateral Gene Transfer.
    Keroack CD; Wurster JI; Decker CG; Williams KM; Slatko BE; Foster JM; Williams SA
    J Parasitol; 2016 Jun; 102(3):312-8. PubMed ID: 26859724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Most of the response elicited against Wolbachia surface protein in filarial nematode infection is due to the infective larval stage.
    Lamb TJ; Le Goff L; Kurniawan A; Guiliano DB; Fenn K; Blaxter ML; Read AF; Allen JE
    J Infect Dis; 2004 Jan; 189(1):120-7. PubMed ID: 14702162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infection of the intermediate mite host with Wolbachia-depleted Litomosoides sigmodontis microfilariae: impaired L1 to L3 development and subsequent sex-ratio distortion in adult worms.
    Arumugam S; Pfarr KM; Hoerauf A
    Int J Parasitol; 2008 Jul; 38(8-9):981-7. PubMed ID: 18282572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concomitant immunity in a rodent model of filariasis: the infection of Meriones unguiculatus with Acanthocheilonema viteae.
    Rajakumar S; Bleiss W; Hartmann S; Schierack P; Marko A; Lucius R
    J Parasitol; 2006 Feb; 92(1):41-5. PubMed ID: 16629313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and ultrastructural characterization of the Wolbachia symbiont in Litomosoides chagasfilhoi.
    Chagas-Moutinho VA; Silva R; de Souza W; Motta MC
    Parasit Vectors; 2015 Feb; 8():74. PubMed ID: 25649218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different suitability of 3 filarial antigens (Litomosoides carinii, Dipetalonema viteae, Dirofilaria immitis) to act as allergens in the Passive Cutaneous Anaphylaxis Test and to serve as antigens in an ELISA in the course of experimental filarial infections (L. carinii, D. viteae, Brugia malayi, B. pahangi) of Mastomys natalensis.
    Zahner H; Reiner G
    Acta Trop; 1984 Mar; 41(1):51-60. PubMed ID: 6143483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts.
    Casiraghi M; Anderson TJ; Bandi C; Bazzocchi C; Genchi C
    Parasitology; 2001 Jan; 122 Pt 1():93-103. PubMed ID: 11197770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence against Wolbachia symbiosis in Loa loa.
    McGarry HF; Pfarr K; Egerton G; Hoerauf A; Akue JP; Enyong P; Wanji S; Kläger SL; Bianco AE; Beeching NJ; Taylor MJ
    Filaria J; 2003 May; 2(1):9. PubMed ID: 12816546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis.
    Bouchery T; Lefoulon E; Karadjian G; Nieguitsila A; Martin C
    Clin Microbiol Infect; 2013 Feb; 19(2):131-40. PubMed ID: 23398406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide synthase in filariae: demonstration of nitric oxide production by embryos in Brugia malayi and Acanthocheilonema viteae.
    Pfarr KM; Qazi S; Fuhrman JA
    Exp Parasitol; 2001 Apr; 97(4):205-14. PubMed ID: 11384164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial catalase from filarial DNA preparations derives from common pseudomonad contaminants and not from Wolbachia endosymbionts.
    Foster J; Baldo L; Blaxter M; Henkle-Dührsen K; Whitton C; Slatko B; Bandi C
    Parasitol Res; 2004 Sep; 94(2):141-6. PubMed ID: 15322925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.