These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 12866826)

  • 1. Analysis of fMRI data by blind separation of data in a tiny spatial domain into independent temporal component.
    Chen H; Yao D; Zhuo Y; Chen L
    Brain Topogr; 2003; 15(4):223-32. PubMed ID: 12866826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?
    Esposito F; Formisano E; Seifritz E; Goebel R; Morrone R; Tedeschi G; Di Salle F
    Hum Brain Mapp; 2002 Jul; 16(3):146-57. PubMed ID: 12112768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis.
    Chen H; Yao D
    Magn Reson Imaging; 2004 Jul; 22(6):827-33. PubMed ID: 15234451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latency (in)sensitive ICA. Group independent component analysis of fMRI data in the temporal frequency domain.
    Calhoun VD; Adali T; Pekar JJ; Pearlson GD
    Neuroimage; 2003 Nov; 20(3):1661-9. PubMed ID: 14642476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis.
    Calhoun VD; Adali T; Stevens MC; Kiehl KA; Pekar JJ
    Neuroimage; 2005 Apr; 25(2):527-38. PubMed ID: 15784432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition.
    Hu G; Zhang Q; Waters AB; Li H; Zhang C; Wu J; Cong F; Nickerson LD
    J Neurosci Methods; 2019 Sep; 325():108359. PubMed ID: 31306718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.
    Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM
    Neuroimage; 2018 Nov; 181():692-717. PubMed ID: 29753843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of TCA and ICA techniques in fMRI data processing.
    Zhao X; Glahn D; Tan LH; Li N; Xiong J; Gao JH
    J Magn Reson Imaging; 2004 Apr; 19(4):397-402. PubMed ID: 15065162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortex-based independent component analysis of fMRI time series.
    Formisano E; Esposito F; Di Salle F; Goebel R
    Magn Reson Imaging; 2004 Dec; 22(10):1493-504. PubMed ID: 15707799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCTICA: Sub-packet constrained temporal ICA method for fMRI data analysis.
    Shi Y; Zeng W
    Comput Biol Med; 2018 Nov; 102():75-85. PubMed ID: 30248514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM
    Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis.
    Cong F; Puoliväli T; Alluri V; Sipola T; Burunat I; Toiviainen P; Nandi AK; Brattico E; Ristaniemi T
    J Neurosci Methods; 2014 Feb; 223():74-84. PubMed ID: 24333752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blind source separation of fMRI data by means of factor analytic transformations.
    Langers DR
    Neuroimage; 2009 Aug; 47(1):77-87. PubMed ID: 19362596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies.
    Lin FH; McIntosh AR; Agnew JA; Eden GF; Zeffiro TA; Belliveau JW
    Neuroimage; 2003 Oct; 20(2):625-42. PubMed ID: 14568440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms.
    Calhoun VD; Adali T; Pearlson GD; Pekar JJ
    Hum Brain Mapp; 2001 May; 13(1):43-53. PubMed ID: 11284046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis.
    Turner GH; Twieg DB
    IEEE Trans Med Imaging; 2005 Jun; 24(6):712-8. PubMed ID: 15957595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis.
    Wang N; Zeng W; Shi Y; Ren T; Jing Y; Yin J; Yang J
    J Neurosci Methods; 2015 May; 246():75-96. PubMed ID: 25791013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.