BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12866840)

  • 1. Catabolite repression in Enterococcus faecalis.
    Rea MC; Cogan TM
    Syst Appl Microbiol; 2003 Jun; 26(2):159-64. PubMed ID: 12866840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose prevents citrate metabolism by enterococci.
    Rea MC; Cogan TM
    Int J Food Microbiol; 2003 Dec; 88(2-3):201-6. PubMed ID: 14596991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Citrate metabolism by Enterococcus faecalis FAIR-E 229.
    Sarantinopoulos P; Kalantzopoulos G; Tsakalidou E
    Appl Environ Microbiol; 2001 Dec; 67(12):5482-7. PubMed ID: 11722896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cometabolism of citrate and glucose by Enterococcus faecium FAIR-E 198 in the absence of cellular growth.
    Vaningelgem F; Ghijsels V; Tsakalidou E; De Vuyst L
    Appl Environ Microbiol; 2006 Jan; 72(1):319-26. PubMed ID: 16391060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli.
    Andersson C; Hodge D; Berglund KA; Rova U
    Biotechnol Prog; 2007; 23(2):381-8. PubMed ID: 17253726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance.
    Goupry S; Gentil E; Akoka S; Robins RJ
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citrate metabolism by Enterococcus faecium and Enterococcus durans isolated from goat's and ewe's milk: influence of glucose and lactose.
    Cabral ME; Abeijón Mukdsi MC; Medina de Figueroa RB; González SN
    Can J Microbiol; 2007 May; 53(5):607-15. PubMed ID: 17668019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of the expression of Enterococcus faecalis citrate fermentation genes during infection.
    Martino GP; Perez CE; Magni C; Blancato VS
    PLoS One; 2018; 13(10):e0205787. PubMed ID: 30335810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Barotolerant variant of Streptococcus faecalis with reduced sensitivity to glucose catabolite repression.
    Campbell J; Bender GR; Marquis RE
    Can J Microbiol; 1985 Jul; 31(7):644-50. PubMed ID: 3928124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the synthesis of M protein by sugars, Todd Hewitt broth, and horse serum, in growing cells of Streptococcus pyogenes.
    Pine L; Reeves MW
    Microbios; 1978; 21(85-86):185-212. PubMed ID: 377029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose starvation response in Enterococcus faecalis JH2-2: survival and protein analysis.
    Giard JC; Hartke A; Flahaut S; Boutibonnes P; Auffray Y
    Res Microbiol; 1997 Jan; 148(1):27-35. PubMed ID: 9404502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Citric acid as a siderophore of enterococci?].
    Lisiecki P; Mikucki J
    Med Dosw Mikrobiol; 2004; 56(1):29-40. PubMed ID: 15524394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technological properties of Enterococcus faecium isolated from ewe's milk and cheese with importance for flavour development.
    Abeijón MC; Medina RB; Katz MB; González SN
    Can J Microbiol; 2006 Mar; 52(3):237-45. PubMed ID: 16604120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and energy generation by Enterococcus faecium FAIR-E 198 during citrate metabolism.
    Sarantinopoulos P; Makras L; Vaningelgem F; Kalantzopoulos G; De Vuyst L; Tsakalidou E
    Int J Food Microbiol; 2003 Jul; 84(2):197-206. PubMed ID: 12781942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.
    Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP
    FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis.
    Pillai SK; Sakoulas G; Eliopoulos GM; Moellering RC; Murray BE; Inouye RT
    J Infect Dis; 2004 Sep; 190(5):967-70. PubMed ID: 15295702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commensal symbiosis between a Lactococcus lactis strain and an Enterococcus mundtii strain increases cell yield in constituted broth.
    Kimoto-Nira H; Ohmori H; Suzuki C
    J Dairy Sci; 2012 Nov; 95(11):6372-8. PubMed ID: 22981578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanolamine Utilization and Bacterial Microcompartment Formation Are Subject to Carbon Catabolite Repression.
    Kaval KG; Gebbie M; Goodson JR; Cruz MR; Winkler WC; Garsin DA
    J Bacteriol; 2019 May; 201(10):. PubMed ID: 30833356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-transfer of vanA and aggregation substance genes from Enterococcus faecalis isolates in intra- and interspecies matings.
    Paoletti C; Foglia G; Princivalli MS; Magi G; Guaglianone E; Donelli G; Pruzzo C; Biavasco F; Facinelli B
    J Antimicrob Chemother; 2007 May; 59(5):1005-9. PubMed ID: 17350988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHYSIOLOGY OF THE ENTEROCOCCI AS RELATED TO THEIR TAXONOMY.
    DEIBEL RH; LAKE DE; NIVEN CF
    J Bacteriol; 1963 Dec; 86(6):1275-82. PubMed ID: 14086101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.