These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 12867493)
1. Kiiv, an in vivo parameter for predicting the magnitude of a drug interaction arising from competitive enzyme inhibition. Neal JM; Kunze KL; Levy RH; O'Reilly RA; Trager WF Drug Metab Dispos; 2003 Aug; 31(8):1043-8. PubMed ID: 12867493 [TBL] [Abstract][Full Text] [Related]
2. Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Black DJ; Kunze KL; Wienkers LC; Gidal BE; Seaton TL; McDonnell ND; Evans JS; Bauwens JE; Trager WF Drug Metab Dispos; 1996 Apr; 24(4):422-8. PubMed ID: 8801057 [TBL] [Abstract][Full Text] [Related]
3. Potentiation of anticoagulant effect of warfarin caused by enantioselective metabolic inhibition by the uricosuric agent benzbromarone. Takahashi H; Sato T; Shimoyama Y; Shioda N; Shimizu T; Kubo S; Tamura N; Tainaka H; Yasumori T; Echizen H Clin Pharmacol Ther; 1999 Dec; 66(6):569-81. PubMed ID: 10613612 [TBL] [Abstract][Full Text] [Related]
4. Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Kunze KL; Wienkers LC; Thummel KE; Trager WF Drug Metab Dispos; 1996 Apr; 24(4):414-21. PubMed ID: 8801056 [TBL] [Abstract][Full Text] [Related]
5. Warfarin-fluconazole. III. A rational approach to management of a metabolically based drug interaction. Kunze KL; Trager WF Drug Metab Dispos; 1996 Apr; 24(4):429-35. PubMed ID: 8801058 [TBL] [Abstract][Full Text] [Related]
6. Pharmacokinetic interaction between warfarin and a uricosuric agent, bucolome: application of In vitro approaches to predicting In vivo reduction of (S)-warfarin clearance. Takahashi H; Kashima T; Kimura S; Murata N; Takaba T; Iwade K; Abe T; Tainaka H; Yasumori T; Echizen aH Drug Metab Dispos; 1999 Oct; 27(10):1179-86. PubMed ID: 10497145 [TBL] [Abstract][Full Text] [Related]
7. Developmental changes in pharmacokinetics and pharmacodynamics of warfarin enantiomers in Japanese children. Takahashi H; Ishikawa S; Nomoto S; Nishigaki Y; Ando F; Kashima T; Kimura S; Kanamori M; Echizen H Clin Pharmacol Ther; 2000 Nov; 68(5):541-55. PubMed ID: 11103757 [TBL] [Abstract][Full Text] [Related]
8. Significant pharmacokinetic and pharmacodynamic interaction of warfarin with the NO-independent sGC activator HMR1766. Oberwittler H; Hirschfeld-Warneken A; Wesch R; Willerich H; Teichert L; Lehr KH; Ding R; Haefeli WE; Mikus G J Clin Pharmacol; 2007 Jan; 47(1):70-7. PubMed ID: 17192504 [TBL] [Abstract][Full Text] [Related]
9. Pharmacokinetic and pharmacodynamic studies of acute interaction between warfarin enantiomers and metronidazole in rats. Yacobi A; Lai CM; Levy G J Pharmacol Exp Ther; 1984 Oct; 231(1):72-9. PubMed ID: 6491976 [TBL] [Abstract][Full Text] [Related]
10. Limited sampling strategy of S-warfarin concentrations, but not warfarin S/R ratios, accurately predicts S-warfarin AUC during baseline and inhibition in CYP2C9 extensive metabolizers. Ma JD; Nafziger AN; Kashuba AD; Kim MJ; Gaedigk A; Rowland E; Kim JS; Bertino JS J Clin Pharmacol; 2004 Jun; 44(6):570-6. PubMed ID: 15145963 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of a potential tigecycline-warfarin drug interaction. Zimmerman JJ; Raible DG; Harper DM; Matschke K; Speth JL Pharmacotherapy; 2008 Jul; 28(7):895-905. PubMed ID: 18576904 [TBL] [Abstract][Full Text] [Related]
12. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Kamali F; Khan TI; King BP; Frearson R; Kesteven P; Wood P; Daly AK; Wynne H Clin Pharmacol Ther; 2004 Mar; 75(3):204-12. PubMed ID: 15001972 [TBL] [Abstract][Full Text] [Related]
13. Selective inhibition of warfarin metabolism by diltiazem in humans. Abernethy DR; Kaminsky LS; Dickinson TH J Pharmacol Exp Ther; 1991 Apr; 257(1):411-5. PubMed ID: 2020000 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of (S)-warfarin metabolism by sulfinpyrazone and its metabolites. He M; Kunze KL; Trager WF Drug Metab Dispos; 1995 Jun; 23(6):659-63. PubMed ID: 7587949 [TBL] [Abstract][Full Text] [Related]
15. Pharmacokinetic and pharmacodynamic studies of acute interaction between warfarin enantiomers and chloramphenicol in rats. Yacobi A; Lai CM; Levy G J Pharmacol Exp Ther; 1984 Oct; 231(1):80-4. PubMed ID: 6491977 [TBL] [Abstract][Full Text] [Related]
16. Prediction of pharmacokinetic drug-drug interactions using human hepatocyte suspension in plasma and cytochrome P450 phenotypic data. III. In vitro-in vivo correlation with fluconazole. Lu C; Berg C; Prakash SR; Lee FW; Balani SK Drug Metab Dispos; 2008 Jul; 36(7):1261-6. PubMed ID: 18381488 [TBL] [Abstract][Full Text] [Related]
17. Possible interaction between warfarin and fluconazole. Gericke KR Pharmacotherapy; 1993; 13(5):508-9. PubMed ID: 8247921 [TBL] [Abstract][Full Text] [Related]
18. Tecarfarin, a novel vitamin K reductase antagonist, is not affected by CYP2C9 and CYP3A4 inhibition following concomitant administration of fluconazole in healthy participants. Bavisotto LM; Ellis DJ; Milner PG; Combs DL; Irwin I; Canafax DM J Clin Pharmacol; 2011 Apr; 51(4):561-74. PubMed ID: 20622200 [TBL] [Abstract][Full Text] [Related]
19. Warfarin. Stereochemical aspects of its metabolism and the interaction with phenylbutazone. Lewis RJ; Trager WF; Chan KK; Breckenridge A; Orme M; Roland M; Schary W J Clin Invest; 1974 Jun; 53(6):1607-17. PubMed ID: 4830225 [TBL] [Abstract][Full Text] [Related]
20. Absence of a pharmacokinetic interaction between etanercept and warfarin. Zhou H; Patat A; Parks V; Buckwalter M; Metzger D; Korth-Bradley J J Clin Pharmacol; 2004 May; 44(5):543-50. PubMed ID: 15102876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]