These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 12867525)

  • 41. Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block.
    Boehme R; Uebele VN; Renger JJ; Pedroarena C
    J Neurophysiol; 2011 Nov; 106(5):2653-61. PubMed ID: 21849607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation.
    Luque NR; Naveros F; Carrillo RR; Ros E; Arleo A
    PLoS Comput Biol; 2019 Mar; 15(3):e1006298. PubMed ID: 30860991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diverse precerebellar neurons share similar intrinsic excitability.
    Kolkman KE; McElvain LE; du Lac S
    J Neurosci; 2011 Nov; 31(46):16665-74. PubMed ID: 22090493
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells.
    Ito-Ishida A; Kakegawa W; Kohda K; Miura E; Okabe S; Yuzaki M
    Eur J Neurosci; 2014 Apr; 39(8):1268-80. PubMed ID: 24467251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells.
    Barmack NH; Qian Z; Yoshimura J
    J Comp Neurol; 2000 Nov; 427(2):235-54. PubMed ID: 11054691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation.
    Menzies JR; Porrill J; Dutia M; Dean P
    PLoS One; 2010 Oct; 5(10):. PubMed ID: 20957149
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells.
    Orduz D; Llano I
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17831-6. PubMed ID: 17965230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice.
    Snow WM; Anderson JE; Fry M
    Neurobiol Learn Mem; 2014 Jan; 107():19-31. PubMed ID: 24220092
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli.
    Dykstra S; Engbers JD; Bartoletti TM; Turner RW
    J Physiol; 2016 Feb; 594(4):985-1003. PubMed ID: 26662168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons.
    Shakkottai VG; Xiao M; Xu L; Wong M; Nerbonne JM; Ornitz DM; Yamada KA
    Neurobiol Dis; 2009 Jan; 33(1):81-8. PubMed ID: 18930825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A theory of cerebellar cortex.
    Marr D
    J Physiol; 1969 Jun; 202(2):437-70. PubMed ID: 5784296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transgenic mouse lines subdivide medial vestibular nucleus neurons into discrete, neurochemically distinct populations.
    Bagnall MW; Stevens RJ; du Lac S
    J Neurosci; 2007 Feb; 27(9):2318-30. PubMed ID: 17329429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance.
    Bosch MK; Carrasquillo Y; Ransdell JL; Kanakamedala A; Ornitz DM; Nerbonne JM
    J Neurosci; 2015 Apr; 35(17):6752-69. PubMed ID: 25926453
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GlyT2+ neurons in the lateral cerebellar nucleus.
    Uusisaari M; Knöpfel T
    Cerebellum; 2010 Mar; 9(1):42-55. PubMed ID: 19826891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unusually Slow Spike Frequency Adaptation in Deep Cerebellar Nuclei Neurons Preserves Linear Transformations on the Subsecond Timescale.
    Khan MM; Wu S; Chen CH; Regehr WG
    J Neurosci; 2022 Oct; 42(40):7581-7593. PubMed ID: 35995561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medical vestibular nucleus.
    Cheron G; Escudero M; Godaux E
    J Neurophysiol; 1996 Sep; 76(3):1759-74. PubMed ID: 8890290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels.
    Chen X; Kovalchuk Y; Adelsberger H; Henning HA; Sausbier M; Wietzorrek G; Ruth P; Yarom Y; Konnerth A
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12323-8. PubMed ID: 20566869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HCN1 channels in cerebellar Purkinje cells promote late stages of learning and constrain synaptic inhibition.
    Rinaldi A; Defterali C; Mialot A; Garden DL; Beraneck M; Nolan MF
    J Physiol; 2013 Nov; 591(22):5691-709. PubMed ID: 24000178
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Axonal regeneration from CNS neurons in the cerebellum and brainstem of adult rats: correlation with the patterns of expression and distribution of messenger RNAs for L1, CHL1, c-jun and growth-associated protein-43.
    Chaisuksunt V; Zhang Y; Anderson PN; Campbell G; Vaudano E; Schachner M; Lieberman AR
    Neuroscience; 2000; 100(1):87-108. PubMed ID: 10996461
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current.
    Pugh JR; Raman IM
    Neuron; 2006 Jul; 51(1):113-23. PubMed ID: 16815336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.