BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 12867527)

  • 1. Selective regulation of xSlo splice variants during Xenopus embryogenesis.
    Kukuljan M; Taylor A; Chouinard H; Olguin P; Rojas CV; Ribera AB
    J Neurophysiol; 2003 Nov; 90(5):3352-60. PubMed ID: 12867527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-activated potassium channel of the tobacco hornworm, Manduca sexta: molecular characterization and expression analysis.
    Keyser MR; Witten JL
    J Exp Biol; 2005 Nov; 208(Pt 21):4167-79. PubMed ID: 16244175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variants of the KCNMB3 regulatory subunit of maxi BK channels affect channel inactivation.
    Hu S; Labuda MZ; Pandolfo M; Goss GG; McDermid HE; Ali DW
    Physiol Genomics; 2003 Nov; 15(3):191-8. PubMed ID: 14612589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of electrical excitability in embryonic neurons: mechanisms and roles.
    Spitzer NC; Ribera AB
    J Neurobiol; 1998 Oct; 37(1):190-7. PubMed ID: 9777741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained upregulation in embryonic spinal neurons of a Kv3.1 potassium channel gene encoding a delayed rectifier current.
    Gurantz D; Lautermilch NJ; Watt SD; Spitzer NC
    J Neurobiol; 2000 Feb; 42(3):347-56. PubMed ID: 10645974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of calcium-activated potassium channels.
    Weiger TM; Hermann A; Levitan IB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Mar; 188(2):79-87. PubMed ID: 11919690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-specific alternative splicing of BK channel transcripts in Drosophila.
    Yu JY; Upadhyaya AB; Atkinson NS
    Genes Brain Behav; 2006 Jun; 5(4):329-39. PubMed ID: 16716202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of potassium channel splice variants from tissues and cells.
    Chen L; Shipston MJ
    Methods Mol Biol; 2008; 491():35-60. PubMed ID: 18998082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat GnRH neurons exhibit large conductance voltage- and Ca2+-Activated K+ (BK) currents and express BK channel mRNAs.
    Hiraizumi Y; Nishimura I; Ishii H; Tanaka N; Takeshita T; Sakuma Y; Kato M
    J Physiol Sci; 2008 Feb; 58(1):21-9. PubMed ID: 18177544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression and alternative splicing of alpha-neurexins during Xenopus development.
    Zeng Z; Sharpe CR; Simons JP; Górecki DC
    Int J Dev Biol; 2006; 50(1):39-46. PubMed ID: 16323076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediate-conductance calcium-activated potassium channels in enteric neurones of the mouse: pharmacological, molecular and immunochemical evidence for their role in mediating the slow afterhyperpolarization.
    Neylon CB; Nurgali K; Hunne B; Robbins HL; Moore S; Chen MX; Furness JB
    J Neurochem; 2004 Sep; 90(6):1414-22. PubMed ID: 15341525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin activates native and recombinant large conductance Ca(2+)-activated potassium channels via a mitogen-activated protein kinase-dependent process.
    O'Malley D; Harvey J
    Mol Pharmacol; 2004 Jun; 65(6):1352-63. PubMed ID: 15155829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+)-activated K+ channels: molecular determinants and function of the SK family.
    Stocker M
    Nat Rev Neurosci; 2004 Oct; 5(10):758-70. PubMed ID: 15378036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of K(Ca) channels in identified populations of developing vertebrate neurons: role of neurotrophic factors and activity.
    Dryer SE; Lhuillier L; Cameron JS; Martin-Caraballo M
    J Physiol Paris; 2003 Jan; 97(1):49-58. PubMed ID: 14706690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional impact of alternative splicing of human T-type Cav3.3 calcium channels.
    Murbartián J; Arias JM; Perez-Reyes E
    J Neurophysiol; 2004 Dec; 92(6):3399-407. PubMed ID: 15254077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human podocytes possess a stretch-sensitive, Ca2+-activated K+ channel: potential implications for the control of glomerular filtration.
    Morton MJ; Hutchinson K; Mathieson PW; Witherden IR; Saleem MA; Hunter M
    J Am Soc Nephrol; 2004 Dec; 15(12):2981-7. PubMed ID: 15579500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum.
    Kanumilli S; Tringham EW; Payne CE; Dupere JR; Venkateswarlu K; Usowicz MM
    Physiol Genomics; 2006 Jan; 24(2):86-96. PubMed ID: 16278278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development.
    Harrell MD; Harbi S; Hoffman JF; Zavadil J; Coetzee WA
    Physiol Genomics; 2007 Feb; 28(3):273-83. PubMed ID: 16985003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Slo potassium channel alternative splicing in the pituitary by gonadal testosterone.
    Mahmoud SF; McCobb DP
    J Neuroendocrinol; 2004 Mar; 16(3):237-43. PubMed ID: 15049854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.