These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 12867531)

  • 1. Regulation of granule cell excitability by a low-threshold calcium spike in turtle olfactory bulb.
    Pinato G; Midtgaard J
    J Neurophysiol; 2003 Nov; 90(5):3341-51. PubMed ID: 12867531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells.
    Pinato G; Midtgaard J
    J Neurophysiol; 2005 Mar; 93(3):1285-94. PubMed ID: 15483062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing inward and outward conductances regulate rebound discharges in olfactory mitral cells.
    Balu R; Strowbridge BW
    J Neurophysiol; 2007 Mar; 97(3):1959-68. PubMed ID: 17151219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb.
    Jahr CE; Nicoll RA
    J Physiol; 1982 May; 326():213-34. PubMed ID: 7108788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells.
    Balu R; Larimer P; Strowbridge BW
    J Neurophysiol; 2004 Aug; 92(2):743-53. PubMed ID: 15277594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+-Na+ spike bursts.
    Ovsepian SV; Friel DD
    Eur J Neurosci; 2008 Jan; 27(1):93-103. PubMed ID: 18093175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic excitability and calcium signalling in the mitral cell distal glomerular tuft.
    Zhou Z; Xiong W; Zeng S; Xia A; Shepherd GM; Greer CA; Chen WR
    Eur J Neurosci; 2006 Sep; 24(6):1623-32. PubMed ID: 17004926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells.
    Egger V
    Eur J Neurosci; 2008 Apr; 27(8):2066-75. PubMed ID: 18412627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of low-threshold Ca2+ spike in the Purkinje cells complex spike.
    Cavelier P; Lohof AM; Lonchamp E; Beekenkamp H; Mariani J; Bossu JL
    Neuroreport; 2008 Feb; 19(3):299-303. PubMed ID: 18303570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of persistent Na+ current in spike initiation in primary sensory neurons of the rat mesencephalic trigeminal nucleus.
    Kang Y; Saito M; Sato H; Toyoda H; Maeda Y; Hirai T; Bae YC
    J Neurophysiol; 2007 Mar; 97(3):2385-93. PubMed ID: 17229822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons.
    Royeck M; Horstmann MT; Remy S; Reitze M; Yaari Y; Beck H
    J Neurophysiol; 2008 Oct; 100(4):2361-80. PubMed ID: 18650312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological and electrophysiological properties of crypt cells from the olfactory epithelium of the marine teleost Trachurus symmetricus.
    Schmachtenberg O
    J Comp Neurol; 2006 Mar; 495(1):113-21. PubMed ID: 16432906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that olfactory sensitivities to calcium and sodium are mediated by different mechanisms in the goldfish Carassius auratus.
    Hubbard PC; CanĂ¡rio AV
    Neurosci Lett; 2007 Feb; 414(1):90-3. PubMed ID: 17196333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-type CaV3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations.
    Chevalier M; Lory P; Mironneau C; Macrez N; Quignard JF
    Eur J Neurosci; 2006 May; 23(9):2321-9. PubMed ID: 16706840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional regulation of T-type calcium channels by s-nitrosothiols in the rat thalamus.
    Joksovic PM; Doctor A; Gaston B; Todorovic SM
    J Neurophysiol; 2007 Apr; 97(4):2712-21. PubMed ID: 17287440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of quantal size of voltage responses to retinal stimulation in the accessory optic system.
    Ariel M; Johny MB
    Brain Res; 2007 Jul; 1157():41-55. PubMed ID: 17543898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism underlying rebound excitation in retinal ganglion cells.
    Mitra P; Miller RF
    Vis Neurosci; 2007; 24(5):709-31. PubMed ID: 17908349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two opposing roles of 4-AP-sensitive K+ current in initiation and invasion of spikes in rat mesencephalic trigeminal neurons.
    Saito M; Murai Y; Sato H; Bae YC; Akaike T; Takada M; Kang Y
    J Neurophysiol; 2006 Oct; 96(4):1887-901. PubMed ID: 16624997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage- and Ca2+-dependent burst generation in neuroendocrine Dahlgren cells in the teleost Platichthys flesus.
    Brierley MJ; Bauer CS; Lu W; Riccardi D; Balment RJ; McCrohan CR
    J Neuroendocrinol; 2004 Oct; 16(10):832-41. PubMed ID: 15500543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells.
    Hardy A; Palouzier-Paulignan B; Duchamp A; Royet JP; Duchamp-Viret P
    Neuroscience; 2005; 131(3):717-31. PubMed ID: 15730876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.