These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 12868040)

  • 1. Fourier-transform infrared spectrometry determination of the metabolic changes during a maximal 400-meter swimming test.
    Petibois C; Déléris G
    Int J Sports Med; 2003 Jul; 24(5):313-9. PubMed ID: 12868040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of stress-induced changes in plasma molecular species by two-dimensional correlation Fourier transform infrared spectrometry.
    Petibois C; Desbat B; Déléris G
    Biopolymers; 2004 Apr; 73(6):696-704. PubMed ID: 15048773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptations to six months of aerobic swim training. Changes in velocity, stroke rate, stroke length and blood lactate.
    Wakayoshi K; Yoshida T; Ikuta Y; Mutoh Y; Miyashita M
    Int J Sports Med; 1993 Oct; 14(7):368-72. PubMed ID: 8244602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FT-IR spectrometry analysis of plasma fatty acyl moieties selective mobilization during endurance exercise.
    Petibois C; Déléris G
    Biopolymers; 2005 Apr; 77(6):345-53. PubMed ID: 15739181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose and lactate concentration determination on single microsamples by Fourier-transform infrared spectroscopy.
    Petibois C; Melin AM; Perromat A; Cazorla G; Déléris G
    J Lab Clin Med; 2000 Feb; 135(2):210-5. PubMed ID: 10695667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of short- and long-term detraining on the metabolic response to endurance exercise.
    Petibois C; Déléris G
    Int J Sports Med; 2003 Jul; 24(5):320-5. PubMed ID: 12868041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pool length on blood lactate, heart rate, and velocity in swimming.
    Keskinen OP; Keskinen KL; Mero AA
    Int J Sports Med; 2007 May; 28(5):407-13. PubMed ID: 17111309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical velocity and lactate threshold in young swimmers.
    Toubekis AG; Tsami AP; Tokmakidis SP
    Int J Sports Med; 2006 Feb; 27(2):117-23. PubMed ID: 16475057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for determining critical swimming velocity.
    Takahashi S; Wakayoshi K; Hayashi A; Sakaguchi Y; Kitagawa K
    Int J Sports Med; 2009 Feb; 30(2):119-23. PubMed ID: 19023845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises.
    Olbrecht J; Madsen O; Mader A; Liesen H; Hollmann W
    Int J Sports Med; 1985 Apr; 6(2):74-7. PubMed ID: 4008143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-induced plasma volume change determined using plasma FT-IR spectra.
    Petibois C; Déléris G
    Appl Spectrosc; 2003 Apr; 57(4):396-9. PubMed ID: 14658635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time limit and VO2 slow component at intensities corresponding to VO2max in swimmers.
    Fernandes RJ; Cardoso CS; Soares SM; Ascensão A; Colaço PJ; Vilas-Boas JP
    Int J Sports Med; 2003 Nov; 24(8):576-81. PubMed ID: 14598193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination and validity of critical swimming velocity in elite physically disabled swimmers.
    Garatachea N; Abadía O; García-Isla FJ; Sarasa FJ; Bresciani G; González-Gallego J; De Paz JA
    Disabil Rehabil; 2006 Dec; 28(24):1551-6. PubMed ID: 17178618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic critical velocity in four swimming techniques.
    Neiva HP; Fernandes RJ; Vilas-Boas JP
    Int J Sports Med; 2011 Mar; 32(3):195-8. PubMed ID: 21165797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a FastSkin suit on submaximal freestyle swimming.
    Roberts BS; Kamel KS; Hedrick CE; McLean SP; Sharp RL
    Med Sci Sports Exerc; 2003 Mar; 35(3):519-24. PubMed ID: 12618585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte adaptation to oxidative stress in endurance training.
    Petibois C; Déléris G
    Arch Med Res; 2005; 36(5):524-31. PubMed ID: 16099333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet suit effect: a comparison between competitive swimmers and triathletes.
    Chatard JC; Senegas X; Selles M; Dreanot P; Geyssant A
    Med Sci Sports Exerc; 1995 Apr; 27(4):580-6. PubMed ID: 7791590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postoperative plasma metabolic consequences of an osseous substitute implantation: analysis by fourier transform infrared spectroscopy.
    Lorin C; Melin AM; Chenu JP; Perromat A; Déléris G
    Appl Spectrosc; 2004 Mar; 58(3):332-7. PubMed ID: 15035715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stroking parameters in front crawl swimming and maximal lactate steady state speed.
    Dekerle J; Nesi X; Lefevre T; Depretz S; Sidney M; Marchand FH; Pelayo P
    Int J Sports Med; 2005; 26(1):53-8. PubMed ID: 15643535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood lactate response and critical speed in swimmers aged 10-12 years of different standards.
    Denadai BS; Greco CC; Teixeira M
    J Sports Sci; 2000 Oct; 18(10):779-84. PubMed ID: 11055813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.