These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 12868528)
41. Removal of heavy metals through adsorption using sand. Awan MA; Qazi IA; Khalid I J Environ Sci (China); 2003 May; 15(3):413-6. PubMed ID: 12938995 [TBL] [Abstract][Full Text] [Related]
42. Removal of Cu(II) from aqueous solutions using chemically modified chitosan. Kannamba B; Reddy KL; AppaRao BV J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344 [TBL] [Abstract][Full Text] [Related]
43. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Hameed BH; Ahmad AA J Hazard Mater; 2009 May; 164(2-3):870-5. PubMed ID: 18838221 [TBL] [Abstract][Full Text] [Related]
44. Lead removal by a natural polysaccharide in membrane reactors. Reddad Z; Gérente C; Andrès Y; Le Cloirec P Water Sci Technol; 2004; 49(1):163-70. PubMed ID: 14979552 [TBL] [Abstract][Full Text] [Related]
45. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study. Gupta VK; Rastogi A Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684 [TBL] [Abstract][Full Text] [Related]
46. Removal of Cd(II) from aqueous solutions using clarified sludge. Naiya TK; Bhattacharya AK; Das SK J Colloid Interface Sci; 2008 Sep; 325(1):48-56. PubMed ID: 18571663 [TBL] [Abstract][Full Text] [Related]
47. Removal of chromium (III) by using coal as adsorbent. Anwar J; Shafique U; Salman M; Waheed-uz-Zaman ; Anwar S; Anzano JM J Hazard Mater; 2009 Nov; 171(1-3):797-801. PubMed ID: 19592161 [TBL] [Abstract][Full Text] [Related]
48. Batch adsorption studies for chromium removal. Sivamani S; Prince Immanuel V J Environ Sci Eng; 2008 Jan; 50(1):11-6. PubMed ID: 19192921 [TBL] [Abstract][Full Text] [Related]
49. Cr(VI) removal from wastewater using low cost sorbent materials: roots of Typha latifolia and ashes. Barrera-Díaz C; Colín-Cruz A; Ureña-Nuñez F; Romero-Romo M; Palomar-Pardavé M Environ Technol; 2004 Aug; 25(8):907-17. PubMed ID: 15366558 [TBL] [Abstract][Full Text] [Related]
50. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. Meena AK; Kadirvelu K; Mishraa GK; Rajagopal C; Nagar PN J Hazard Mater; 2008 Feb; 150(3):619-25. PubMed ID: 17574736 [TBL] [Abstract][Full Text] [Related]
51. [Analysis on the removal efficiency of phosphorus in some substrates used in constructed wetland systems]. Yuan DH; Jing LJ; Gao SX; Yin DQ; Wang LS Huan Jing Ke Xue; 2005 Jan; 26(1):51-5. PubMed ID: 15859408 [TBL] [Abstract][Full Text] [Related]
52. Recovery oriented phosphorus adsorption process in decentralized advanced Johkasou. Ebie Y; Kondo T; Kadoya N; Mouri M; Maruyama O; Noritake S; Inamori Y; Xu K Water Sci Technol; 2008; 57(12):1977-81. PubMed ID: 18587187 [TBL] [Abstract][Full Text] [Related]
53. Soluble phosphorus removal through adsorption on spent alum sludge. Georgantas DA; Matsis VM; Grigoropoulou HP Environ Technol; 2006 Oct; 27(10):1081-8. PubMed ID: 17144257 [TBL] [Abstract][Full Text] [Related]
54. Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. Bhattacharyya KG; Sharma A J Hazard Mater; 2004 Sep; 113(1-3):97-109. PubMed ID: 15363519 [TBL] [Abstract][Full Text] [Related]
55. Removal of methylene blue from aqueous solution by chaff in batch mode. Han R; Wang Y; Han P; Shi J; Yang J; Lu Y J Hazard Mater; 2006 Sep; 137(1):550-7. PubMed ID: 16600482 [TBL] [Abstract][Full Text] [Related]
56. Adsorption studies on wastewaters from cypermethrin manufacturing process using activated coconut shell carbon. Bhuvaneswari K; Ravi Prasad P; Sarma PN J Environ Sci Eng; 2007 Oct; 49(4):265-72. PubMed ID: 18476373 [TBL] [Abstract][Full Text] [Related]
57. Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. Chandra Sekhar K; Kamala CT; Chary NS; Sastry AR; Nageswara Rao T; Vairamani M J Hazard Mater; 2004 Apr; 108(1-2):111-7. PubMed ID: 15081169 [TBL] [Abstract][Full Text] [Related]
58. Comparison of two-stage sorption design models for the removal of lead ions by polyvinyl-modified Kaolinite clay. Unuabonah EI; Olu-Owolabi BI; Okoro D; Adebowale KO J Hazard Mater; 2009 Nov; 171(1-3):215-21. PubMed ID: 19632035 [TBL] [Abstract][Full Text] [Related]
59. Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. Jain M; Garg VK; Kadirvelu K J Environ Manage; 2010; 91(4):949-57. PubMed ID: 20042266 [TBL] [Abstract][Full Text] [Related]
60. Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution. Dinçer AR; Güneş Y; Karakaya N J Hazard Mater; 2007 Mar; 141(3):529-35. PubMed ID: 16978765 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]