These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12868623)

  • 1. Wave-front aberrations in the anterior corneal surface and the whole eye.
    He JC; Gwiazda J; Thorn F; Held R
    J Opt Soc Am A Opt Image Sci Vis; 2003 Jul; 20(7):1155-63. PubMed ID: 12868623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Distribution and compensation mechanism of aberrations between anterior and posterior surface of the cornea in myopia and myopic astigmatism eyes].
    Li XJ; Wang Y; Wu YN; Wu WJ; Yu CJ; Xu LL
    Zhonghua Yan Ke Za Zhi; 2016 Nov; 52(11):840-849. PubMed ID: 27852401
    [No Abstract]   [Full Text] [Related]  

  • 3. Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism.
    Marcos S; Rosales P; Llorente L; Barbero S; Jiménez-Alfaro I
    Vision Res; 2008 Jan; 48(1):70-9. PubMed ID: 18054373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye.
    Kelly JE; Mihashi T; Howland HC
    J Vis; 2004 Apr; 4(4):262-71. PubMed ID: 15134473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micrometric Control of the Optics of the Human Eye: Environment or Genes?
    Tabernero J; Hervella L; Benito A; Colodro-Conde L; Ordoñana JR; Ruiz-Sanchez M; Marín JM; Artal P
    Invest Ophthalmol Vis Sci; 2017 Apr; 58(4):1964-1970. PubMed ID: 28384718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the compensation of horizontal coma aberrations in young human eyes.
    Lu F; Wu J; Shen Y; Qu J; Wang Q; Xu C; Chen S; Zhou X; He JC
    Ophthalmic Physiol Opt; 2008 May; 28(3):277-82. PubMed ID: 18426428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of intraocular pressure on wavefront aberrations in patients undergoing laser-assisted in situ keratomileusis.
    Hu L; Wang Q; Yu P; Yu Y; Zhang D; He JC; Lu F
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5527-34. PubMed ID: 23778879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The relationship between corneal astigmatism with a vector-based method and whole eye second order wavefront aberrations].
    Wu JX; Lü F; He JC; Hu L; Shen YY; Chen SH; Xu CC; Qu J
    Zhonghua Yan Ke Za Zhi; 2006 Sep; 42(9):782-7. PubMed ID: 17173737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical response to LASIK surgery for myopia from total and corneal aberration measurements.
    Marcos S; Barbero S; Llorente L; Merayo-Lloves J
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3349-56. PubMed ID: 11726644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LASIK-induced aberrations: comparing corneal and whole-eye measurements.
    Gobbe M; Reinstein DZ; Archer TJ
    Optom Vis Sci; 2015 Apr; 92(4):447-55. PubMed ID: 25785529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age.
    Artal P; Berrio E; Guirao A; Piers P
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):137-43. PubMed ID: 11778716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavefront aberration and its association with intraocular pressure and central corneal thickness in myopic eyes.
    Qu J; Lu F; Wu J; Wang Q; Xu C; Zhou X; He JC
    J Cataract Refract Surg; 2007 Aug; 33(8):1447-54. PubMed ID: 17662440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.
    Liu T; Thibos LN
    Ophthalmic Physiol Opt; 2017 May; 37(3):305-316. PubMed ID: 28281302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal thickness association with ocular and corneal high-order aberrations.
    Mohamed EM; Wojtowicz JC; Bowman W; Cavanagh HD; Mootha V; Verity S; McCulley JP
    Eye Contact Lens; 2009 Nov; 35(6):297-301. PubMed ID: 19713859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberration compensation between anterior and posterior corneal surfaces after Small incision lenticule extraction and Femtosecond laser-assisted laser in-situ keratomileusis.
    Li X; Wang Y; Dou R
    Ophthalmic Physiol Opt; 2015 Sep; 35(5):540-51. PubMed ID: 26087672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses.
    Marcos S; Rosales P; Llorente L; Jiménez-Alfaro I
    J Cataract Refract Surg; 2007 Feb; 33(2):217-26. PubMed ID: 17276261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic effect on refractive error and anterior corneal aberration: twin eye study.
    Yeh LK; Chiu CJ; Fong CF; Wang IJ; Chen WL; Hsiao CK; Huang SC; Shih YF; Hu FR; Lin LL
    J Refract Surg; 2007 Mar; 23(3):257-65. PubMed ID: 17385291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of age on components of peripheral ocular aberrations.
    Mathur A; Atchison DA; Tabernero J
    Optom Vis Sci; 2012 Jul; 89(7):E967-76. PubMed ID: 22705777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery.
    McCormick GJ; Porter J; Cox IG; MacRae S
    Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye.
    Benito A; Redondo M; Artal P
    Am J Ophthalmol; 2009 Mar; 147(3):424-431.e1. PubMed ID: 19058779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.