These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 12868759)
1. Synthesis and structure of [Zn(OMe)(L)] x [Zn(OH)(L)] x 2(BPh4), L = cis,cis-1,3,5-tris[(E,E)-3-(2-furyl)acrylideneamino]cyclohexane: structural models of carbonic anhydrase and liver alcohol dehydrogenase. Cronin L; Walton PH Chem Commun (Camb); 2003 Jul; (13):1572-3. PubMed ID: 12868759 [TBL] [Abstract][Full Text] [Related]
2. Syntheses and structures of M(L)(X)BPh4 complexes (M = Co(II), Zn(II); L = cis-1,3,5-tris[3-(2-furyl)prop-2-enylideneamino]cyclohexane, X = OAc, NO3) n: structural models of the active site of carbonic anhydrase. Cronin L; Foxon SP; Lusby PJ; Walton PH J Biol Inorg Chem; 2001 Apr; 6(4):367-77. PubMed ID: 11376544 [TBL] [Abstract][Full Text] [Related]
3. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase. Bergquist C; Fillebeen T; Morlok MM; Parkin G J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851 [TBL] [Abstract][Full Text] [Related]
4. Structural studies of the [tris(imidazolyl)phosphine]metal nitrate complexes [[PimPrl,But]M(NO3)]+ (M = Co, Cu, Zn, Cd, Hg): comparison of nitrate-binding modes in synthetic analogues of carbonic anhydrase. Kimblin C; Murphy VJ; Hascall T; Bridgewater BM; Bonanno JB; Parkin G Inorg Chem; 2000 Mar; 39(5):967-74. PubMed ID: 12526376 [TBL] [Abstract][Full Text] [Related]
5. Nucleophilic reaction by carbonic anhydrase model zinc compound: characterization of intermediates for CO2 hydration and phosphoester hydrolysis. Echizen T; Ibrahim MM; Nakata K; Izumi M; Ichikawa K; Shiro M J Inorg Biochem; 2004 Aug; 98(8):1347-60. PubMed ID: 15271511 [TBL] [Abstract][Full Text] [Related]
6. Solid-State 67Zn NMR spectroscopic studies and ab initio molecular orbital calculations on a synthetic analogue of carbonic anhydrase. Lipton AS; Bergquist C; Parkin G; Ellis PD J Am Chem Soc; 2003 Apr; 125(13):3768-72. PubMed ID: 12656608 [TBL] [Abstract][Full Text] [Related]
7. Sulfur-rich zinc chemistry: new tris(thioimidazolyl)hydroborate ligands and their zinc complex chemistry related to the structure and function of alcohol dehydrogenase. Tesmer M; Shu M; Vahrenkamp H Inorg Chem; 2001 Jul; 40(16):4022-9. PubMed ID: 11466063 [TBL] [Abstract][Full Text] [Related]
8. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein. Udom AO; Brady FO Biochem J; 1980 May; 187(2):329-35. PubMed ID: 6772158 [TBL] [Abstract][Full Text] [Related]
9. Modeling substrate- and inhibitor-bound forms of liver alcohol dehydrogenase: chemistry of mononuclear nitrogen/sulfur-ligated zinc alcohol, formamide, and sulfoxide complexes. Makowska-Grzyska MM; Jeppson PC; Allred RA; Arif AM; Berreau LM Inorg Chem; 2002 Sep; 41(19):4872-87. PubMed ID: 12230391 [TBL] [Abstract][Full Text] [Related]
10. Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis. Elstner M; Cui Q; Munih P; Kaxiras E; Frauenheim T; Karplus M J Comput Chem; 2003 Apr; 24(5):565-81. PubMed ID: 12632471 [TBL] [Abstract][Full Text] [Related]
11. Dynamic encapsulation and activation of carbonic anhydrase in multivalent dynameric host matrices. Zhang Y; Legrand YM; Petit E; Supuran CT; Barboiu M Chem Commun (Camb); 2016 Mar; 52(21):4053-5. PubMed ID: 26893199 [TBL] [Abstract][Full Text] [Related]
12. Manganese(II) tri-tert-butoxysilanethiolate complexes with imidazole-based coligands: a neutral complex with four independent ligands and MNOS2 core (M=Mn) related to the liver alcohol dehydrogenase catalytic center (M=Zn). Kropidłowska A; Chojnacki J; Becker B J Inorg Biochem; 2007 Apr; 101(4):578-84. PubMed ID: 17234270 [TBL] [Abstract][Full Text] [Related]
13. Impact of Chemical Cross-Linking on Protein Structure and Function. Rozbeský D; Rosůlek M; Kukačka Z; Chmelík J; Man P; Novák P Anal Chem; 2018 Jan; 90(2):1104-1113. PubMed ID: 29232109 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and carbonic anhydrase inhibitory properties of novel cyclohexanonyl bromophenol derivatives. Balaydın HT; Sentürk M; Menzek A Bioorg Med Chem Lett; 2012 Feb; 22(3):1352-7. PubMed ID: 22230050 [TBL] [Abstract][Full Text] [Related]
15. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Cox EH; McLendon GL; Morel FM; Lane TW; Prince RC; Pickering IJ; George GN Biochemistry; 2000 Oct; 39(40):12128-30. PubMed ID: 11015190 [TBL] [Abstract][Full Text] [Related]
16. The ins and outs of biological zinc sites. Auld DS Biometals; 2009 Feb; 22(1):141-8. PubMed ID: 19140015 [TBL] [Abstract][Full Text] [Related]
17. Synthetic analogs of zinc enzymes. Parkin G Met Ions Biol Syst; 2001; 38():411-60. PubMed ID: 11219017 [No Abstract] [Full Text] [Related]
18. Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-A resolution: implications for catalytic proton transfer and inhibitor design. Boriack-Sjodin PA; Heck RW; Laipis PJ; Silverman DN; Christianson DW Proc Natl Acad Sci U S A; 1995 Nov; 92(24):10949-53. PubMed ID: 7479916 [TBL] [Abstract][Full Text] [Related]
19. High kinetic stability of Zn(II) coordinated by the tris(histidine) unit of carbonic anhydrase towards solvolytic dissociation studied by affinity capillary electrophoresis. Sato Y; Hoshino H; Iki N J Inorg Biochem; 2016 Aug; 161():122-7. PubMed ID: 27235274 [TBL] [Abstract][Full Text] [Related]