These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12868779)

  • 21. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils.
    Oorts K; Bronckaers H; Smolders E
    Environ Toxicol Chem; 2006 Mar; 25(3):845-53. PubMed ID: 16566170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soil contamination and plant uptake of heavy metals at polluted sites in China.
    Wang QR; Cui YS; Liu XM; Dong YT; Christie P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 May; 38(5):823-38. PubMed ID: 12744435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.
    González-Alcaraz MN; van Gestel CA
    Environ Res; 2015 Oct; 142():177-84. PubMed ID: 26162961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.
    González-Alcaraz MN; Loureiro S; van Gestel CAM
    Chemosphere; 2018 Apr; 197():26-32. PubMed ID: 29331715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria.
    Seneviratne M; Weerasundara L; Ok YS; Rinklebe J; Vithanage M
    J Environ Manage; 2017 Jan; 186(Pt 2):293-300. PubMed ID: 27527669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved method for determination of heavy metal bioavailability in contaminated soil.
    Lin SH; Lai SL; Leu HG
    Environ Technol; 2001 Jun; 22(6):731-9. PubMed ID: 11482394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques.
    Nolan AL; Zhang H; McLaughlin MJ
    J Environ Qual; 2005; 34(2):496-507. PubMed ID: 15758102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of metal bioavailability in Dutch field soils for the oligochaete Enchytraeus crypticus.
    Peijnenburg WJ; Posthuma L; Zweers PG; Baerselman R; de Groot AC; Van Veen RP; Jager T
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):170-86. PubMed ID: 10375420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.
    Khan KS; Joergensen RG
    Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioavailability of contaminants estimated from uptake rates into soil invertebrates.
    van Straalen NM; Donker MH; Vijver MG; van Gestel CA
    Environ Pollut; 2005 Aug; 136(3):409-17. PubMed ID: 15862395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils.
    Saif S; Khan MS
    Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal uptake from soils and soil-sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera).
    Vijver M; Jager T; Posthuma L; Peijnenburg W
    Ecotoxicol Environ Saf; 2003 Mar; 54(3):277-89. PubMed ID: 12651183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils.
    Alkorta I; Epelde L; Mijangos I; Amezaga I; Garbisu C
    Rev Environ Health; 2006; 21(2):139-52. PubMed ID: 16898676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time and moisture effects on total and bioavailable copper in soil water extracts.
    Tom-Petersen A; Hansen HC; Nybroe O
    J Environ Qual; 2004; 33(2):505-12. PubMed ID: 15074801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions.
    Boyd WA; Williams PL
    Environ Toxicol Chem; 2003 May; 22(5):1100-6. PubMed ID: 12729220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of heavy metals on earthworms along contamination gradients in organic rich soils.
    Lukkari T; Taavitsainen M; Väisänen A; Haimi J
    Ecotoxicol Environ Saf; 2004 Nov; 59(3):340-8. PubMed ID: 15388274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of leaching and aging on the bioavailability of lead to the springtail Folsomia candida.
    Lock K; Waegeneers N; Smolders E; Criel P; Van Eeckhout H; Janssen CR
    Environ Toxicol Chem; 2006 Aug; 25(8):2006-10. PubMed ID: 16916018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: metal bioavailability and bioaccumulation.
    Gomot-de VA; Pihan F
    Environ Toxicol Chem; 2002 Apr; 21(4):820-7. PubMed ID: 11951957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake of metals by food plants grown on soils 10 years after biosolids application.
    Bai Y; Chen W; Chang AC; Page AL
    J Environ Sci Health B; 2010 Aug; 45(6):531-9. PubMed ID: 20603745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.