These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12868831)

  • 1. Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers.
    Fällman E; Axner O
    Appl Opt; 2003 Jul; 42(19):3915-26. PubMed ID: 12868831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trap stiffness in the presence and absence of spherical aberrations.
    Vermeulen KC; Wuite GJ; Stienen GJ; Schmidt CF
    Appl Opt; 2006 Mar; 45(8):1812-9. PubMed ID: 16572698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotation of birefringent particles in optical tweezers with spherical aberration.
    Zhong MC; Zhou JH; Ren YX; Li YM; Wang ZQ
    Appl Opt; 2009 Aug; 48(22):4397-402. PubMed ID: 19649044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2545-54. PubMed ID: 15119624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberration compensation for optical trapping of cells within living mice.
    Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2017 Mar; 56(7):1972-1976. PubMed ID: 28248397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient optical trapping with cylindrical vector beams.
    Moradi H; Shahabadi V; Madadi E; Karimi E; Hajizadeh F
    Opt Express; 2019 Mar; 27(5):7266-7276. PubMed ID: 30876293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active particle control through silicon using conventional optical trapping techniques.
    Appleyard DC; Lang MJ
    Lab Chip; 2007 Dec; 7(12):1837-40. PubMed ID: 18030409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards absolute calibration of optical tweezers.
    Viana NB; Rocha MS; Mesquita ON; Mazolli A; Maia Neto PA; Nussenzveig HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021914. PubMed ID: 17358374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Paták A; Pokorná Z; Mika F; Zemánek P
    Sci Rep; 2015 Jan; 5():8106. PubMed ID: 25630432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.
    Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O
    Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of flat particles in optical tweezers by linearly polarized light.
    Galajda P; Ormos P
    Opt Express; 2003 Mar; 11(5):446-51. PubMed ID: 19461751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing conical refraction optical tweezers.
    McDonald C; McDougall C; Rafailov E; McGloin D
    Opt Lett; 2014 Dec; 39(23):6691-4. PubMed ID: 25490654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized high-NA focusing-mirror multiple optical tweezers.
    Merenda F; Rohner J; Fournier JM; Salathé RP
    Opt Express; 2007 May; 15(10):6075-86. PubMed ID: 19546912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position.
    Ukita H; Kawashima H
    Appl Opt; 2010 Apr; 49(10):1991-6. PubMed ID: 20357886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsphere-coupled optical tweezers.
    Khosravi MH; Shahabadi V; Hajizadeh F
    Opt Lett; 2021 Sep; 46(17):4124-4127. PubMed ID: 34469955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical mirror trap with a large field of view.
    Pitzek M; Steiger R; Thalhammer G; Bernet S; Ritsch-Marte M
    Opt Express; 2009 Oct; 17(22):19414-23. PubMed ID: 19997161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.