BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12868852)

  • 1. Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media.
    Amelink A; Bard MP; Burgers SA; Sterenborg HJ
    Appl Opt; 2003 Jul; 42(19):4095-101. PubMed ID: 12868852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the local optical properties of turbid media by differential path-length spectroscopy.
    Amelink A; Sterenborg HJ
    Appl Opt; 2004 May; 43(15):3048-54. PubMed ID: 15176191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media.
    Liu Q; Ramanujam N
    Opt Lett; 2004 Sep; 29(17):2034-6. PubMed ID: 15455771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative spectroscopy of superficial turbid media.
    Tseng SH; Hayakawa C; Tromberg BJ; Spanier J; Durkin AJ
    Opt Lett; 2005 Dec; 30(23):3165-7. PubMed ID: 16350274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence.
    Kaspers OP; Sterenborg HJ; Amelink A
    Appl Opt; 2008 Jan; 47(3):365-71. PubMed ID: 18204723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber.
    Bassi A; Swartling J; D'Andrea C; Pifferi A; Torricelli A; Cubeddu R
    Opt Lett; 2004 Oct; 29(20):2405-7. PubMed ID: 15534962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm.
    Papaioannou T; Preyer NW; Fang Q; Brightwell A; Carnohan M; Cottone G; Ross R; Jones LR; Marcu L
    Appl Opt; 2004 May; 43(14):2846-60. PubMed ID: 15143808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-referenced Doppler optical coherence tomography in scattering media.
    Pedersen CJ; Yazdanfar S; Westphal V; Rollins AM
    Opt Lett; 2005 Aug; 30(16):2125-7. PubMed ID: 16127931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    J Biomed Opt; 2007; 12(2):024020. PubMed ID: 17477735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
    Arifler D; Schwarz RA; Chang SK; Richards-Kortum R
    Appl Opt; 2005 Jul; 44(20):4291-305. PubMed ID: 16045217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focal modulation microscopy.
    Chen N; Wong CH; Sheppard CJ
    Opt Express; 2008 Nov; 16(23):18764-9. PubMed ID: 19581963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-optic fluorescence correlation spectrometer.
    Garai K; Muralidhar M; Maiti S
    Appl Opt; 2006 Oct; 45(28):7538-42. PubMed ID: 16983444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency and side-viewing micro fiber optic probe for in-vivo diffuse reflectance measurements of human epithelial tissues.
    Garcia-Uribe A; Balareddy KC; Chang CC; Yapici MK; Zou J; Wang LV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():757-60. PubMed ID: 19964486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties.
    Gomes AJ; Turzhitsky V; Ruderman S; Backman V
    Appl Opt; 2012 Jul; 51(20):4627-37. PubMed ID: 22781238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential optical spectroscopy for absorption characterization of scattering media.
    Billet C; Sablong R
    Opt Lett; 2007 Nov; 32(22):3251-3. PubMed ID: 18026270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.
    Mutyal NN; Radosevich A; Gould B; Rogers JD; Gomes A; Turzhitsky V; Backman V
    Opt Express; 2012 Aug; 20(18):19643-57. PubMed ID: 23037017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical fiber-based fluorescent viscosity sensor.
    Haidekker MA; Akers WJ; Fischer D; Theodorakis EA
    Opt Lett; 2006 Sep; 31(17):2529-31. PubMed ID: 16902608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo.
    Yu B; Lo JY; Kuech TF; Palmer GM; Bender JE; Ramanujam N
    J Biomed Opt; 2008; 13(6):060505. PubMed ID: 19123646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.