These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 12868919)
1. Sulfide and sulfoxide oxidations by mono- and diperoxo complexes of molybdenum. A density functional study. Sensato FR; Custodio R; Longo E; Safont VS; Andres J J Org Chem; 2003 Jul; 68(15):5870-4. PubMed ID: 12868919 [TBL] [Abstract][Full Text] [Related]
2. Kinetic studies on the oxidation of aryl methyl sulfides and sulfoxides by dimethyldioxirane; absolute rate constants and activation parameters for 4-nitrophenyl methyl sulfide and sulfoxide. Hanson P; Hendrickx RA; Lindsay Smith JR Org Biomol Chem; 2008 Feb; 6(4):762-71. PubMed ID: 18264577 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic investigation of the oxygen-atom-transfer reactivity of dioxo-molybdenum(VI) complexes. Kail BW; Pérez LM; Zarić SD; Millar AJ; Young CG; Hall MB; Basu P Chemistry; 2006 Sep; 12(28):7501-9. PubMed ID: 16865754 [TBL] [Abstract][Full Text] [Related]
4. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of initial propane activation on molybdenum oxides: a density functional theory study. Fu G; Xu X; Lu X; Wan H J Phys Chem B; 2005 Apr; 109(13):6416-21. PubMed ID: 16851714 [TBL] [Abstract][Full Text] [Related]
6. Observed and calculated 1H and 13C chemical shifts induced by the in situ oxidation of model sulfides to sulfoxides and sulfones. Dracínský M; Pohl R; Slavetínská L; Budesínský M Magn Reson Chem; 2010 Sep; 48(9):718-26. PubMed ID: 20661941 [TBL] [Abstract][Full Text] [Related]
7. Pyramidal inversion mechanism of simple chiral and achiral sulfoxides: a theoretical study. Marom H; Biedermann PU; Agranat I Chirality; 2007 Jul; 19(7):559-69. PubMed ID: 17508397 [TBL] [Abstract][Full Text] [Related]
8. Experimental and theoretical study of a truly functional biomimetic molybdenum oxotransferase analogue system. Heinze K; Marano G; Fischer A J Inorg Biochem; 2008; 102(5-6):1199-211. PubMed ID: 18321587 [TBL] [Abstract][Full Text] [Related]
9. Imination of sulfides and sulfoxides with sulfonylimino-lambda3-bromane under mild, metal-free conditions. Ochiai M; Naito M; Miyamoto K; Hayashi S; Nakanishi W Chemistry; 2010 Aug; 16(29):8713-8. PubMed ID: 20572186 [TBL] [Abstract][Full Text] [Related]
10. Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects. Xiong Y; Zhan CG J Org Chem; 2004 Nov; 69(24):8451-8. PubMed ID: 15549820 [TBL] [Abstract][Full Text] [Related]
11. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: a density functional theory study. Joshi AM; Delgass WN; Thomson KT J Phys Chem B; 2006 Feb; 110(6):2572-81. PubMed ID: 16471857 [TBL] [Abstract][Full Text] [Related]
12. Electronic and steric effects on the oxygenation of organic sulfides and sulfoxides with oxo(salen)chromium(V) complexes. Venkataramanan NS; Premsingh S; Rajagopal S; Pitchumani K J Org Chem; 2003 Sep; 68(19):7460-70. PubMed ID: 12968901 [TBL] [Abstract][Full Text] [Related]
13. Free energy landscapes for S-H bonds in Cp*2Mo2S4 complexes. Appel AM; Lee SJ; Franz JA; DuBois DL; DuBois MR J Am Chem Soc; 2009 Apr; 131(14):5224-32. PubMed ID: 19309157 [TBL] [Abstract][Full Text] [Related]
14. Molybdenum oxides versus molybdenum sulfides: geometric and electronic structures of Mo₃X(y)⁻ (X = O, S and y = 6, 9) clusters. Mayhall NJ; Becher EL; Chowdhury A; Raghavachari K J Phys Chem A; 2011 Mar; 115(11):2291-6. PubMed ID: 21366356 [TBL] [Abstract][Full Text] [Related]
15. Alloxazine-cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations. Mojr V; Buděšínský M; Cibulka R; Kraus T Org Biomol Chem; 2011 Nov; 9(21):7318-26. PubMed ID: 21879132 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of water oxidation catalysis promoted by [tpyRu(IV)=O]2L3+: a computational study. Yang X; Baik MH J Am Chem Soc; 2008 Dec; 130(48):16231-40. PubMed ID: 18998636 [TBL] [Abstract][Full Text] [Related]
17. Modeling the oxidation of ebselen and other organoselenium compounds using explicit solvent networks. Bayse CA; Antony S J Phys Chem A; 2009 May; 113(19):5780-5. PubMed ID: 19374403 [TBL] [Abstract][Full Text] [Related]
18. Molecular orbital calculations of ring opening of the isoelectronic cyclopropylcarbinyl radical, cyclopropoxy radical, and cyclopropylaminium radical cation series of radical clocks. Cooksy AL; King HF; Richardson WH J Org Chem; 2003 Nov; 68(24):9441-52. PubMed ID: 14629170 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen-atom transfer in open-shell organometallic chemistry: the reactivity of Rh(II)(cod) and Ir(II)(cod) radicals. Hetterscheid DG; Klop M; Kicken RJ; Smits JM; Reijerse EJ; de Bruin B Chemistry; 2007; 13(12):3386-405. PubMed ID: 17219454 [TBL] [Abstract][Full Text] [Related]
20. Comparative density functional theory study of the binding of ligands to Cu+ and Cu2+: Influence of the coordination and oxidation state. Ducéré JM; Goursot A; Berthomieu D J Phys Chem A; 2005 Jan; 109(2):400-8. PubMed ID: 16833359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]