These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12869369)

  • 1. Reactive oxygen species mediate arachidonic acid-induced dilation in porcine coronary microvessels.
    Oltman CL; Kane NL; Miller FJ; Spector AA; Weintraub NL; Dellsperger KC
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2309-15. PubMed ID: 12869369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species: role in the relaxation induced by bradykinin or arachidonic acid via EDHF in isolated porcine coronary arteries.
    Pomposiello S; Rhaleb NE; Alva M; Carretero OA
    J Cardiovasc Pharmacol; 1999 Oct; 34(4):567-74. PubMed ID: 10511133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-endothelial endothelin counteracts hypoxic vasodilation in porcine large coronary arteries.
    Hedegaard ER; Stankevicius E; Simonsen U; Fröbert O
    BMC Physiol; 2011 May; 11(1):8. PubMed ID: 21575165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of dilation to reactive oxygen species in human coronary arterioles.
    Sato A; Sakuma I; Gutterman DD
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2345-54. PubMed ID: 14613909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arachidonic acid- and prostaglandin E2-induced cerebral vasodilation is mediated by carbon monoxide, independent of reactive oxygen species in piglets.
    Kanu A; Leffler CW
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2482-7. PubMed ID: 21984542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-derived hyperpolarizing factor in coronary microcirculation: responses to arachidonic acid.
    Oltman CL; Kane NL; Fudge JL; Weintraub NL; Dellsperger KC
    Am J Physiol Heart Circ Physiol; 2001 Oct; 281(4):H1553-60. PubMed ID: 11557543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of protein kinase Cbeta protects against diabetes-induced impairment in arachidonic acid dilation of small coronary arteries.
    Zhou W; Wang XL; Lamping KG; Lee HC
    J Pharmacol Exp Ther; 2006 Oct; 319(1):199-207. PubMed ID: 16861398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2+-activated K+ channels.
    Miura H; Gutterman DD
    Circ Res; 1998 Sep; 83(5):501-7. PubMed ID: 9734472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated oxygen species do not mediate hypercapnia-induced cerebral vasodilation in newborn pigs.
    Leffler CW; Mirro R; Thompson C; Shibata M; Armstead WM; Pourcyrous M; Thelin O
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H335-42. PubMed ID: 1877661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism.
    LeBlanc AJ; Moseley AM; Chen BT; Frazer D; Castranova V; Nurkiewicz TR
    Cardiovasc Toxicol; 2010 Mar; 10(1):27-36. PubMed ID: 20033351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H; Kuo L
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation.
    Beyer AM; Freed JK; Durand MJ; Riedel M; Ait-Aissa K; Green P; Hockenberry JC; Morgan RG; Donato AJ; Peleg R; Gasparri M; Rokkas CK; Santos JH; Priel E; Gutterman DD
    Circ Res; 2016 Mar; 118(5):856-66. PubMed ID: 26699654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P-450 pathway in acetylcholine-induced canine coronary microvascular vasodilation in vivo.
    Widmann MD; Weintraub NL; Fudge JL; Brooks LA; Dellsperger KC
    Am J Physiol; 1998 Jan; 274(1):H283-9. PubMed ID: 9458878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperoxic gassing with Tiron enhances bradykinin-induced endothelium-dependent and EDH-type relaxation through generation of hydrogen peroxide.
    Wong PS; Roberts RE; Randall MD
    Pharmacol Res; 2015 Jan; 91():29-35. PubMed ID: 25450247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels.
    Thengchaisri N; Kuo L
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2255-63. PubMed ID: 14613908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation.
    Kuo L; Davis MJ; Chilian WM
    Circulation; 1995 Aug; 92(3):518-25. PubMed ID: 7543382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of coronary vasodilation to insulin and insulin-like growth factor I is dependent on vessel size.
    Oltman CL; Kane NL; Gutterman DD; Bar RS; Dellsperger KC
    Am J Physiol Endocrinol Metab; 2000 Jul; 279(1):E176-81. PubMed ID: 10893337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual effects of arachidonic acid on ATP-sensitive K+ current of coronary smooth muscle cells.
    Xu X; Lee KS
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H1957-62. PubMed ID: 8764244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear stress-induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release.
    Dube S; Canty JM
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2581-90. PubMed ID: 11356613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible mediators of connecting tubule glomerular feedback.
    Ren Y; D'Ambrosio MA; Garvin JL; Wang H; Carretero OA
    Hypertension; 2009 Feb; 53(2):319-23. PubMed ID: 19047578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.