These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 12869543)
1. Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. Blöcker D; Pohlmann K; Haug G; Bachmeyer C; Benz R; Aktories K; Barth H J Biol Chem; 2003 Sep; 278(39):37360-7. PubMed ID: 12869543 [TBL] [Abstract][Full Text] [Related]
2. The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. Haug G; Leemhuis J; Tiemann D; Meyer DK; Aktories K; Barth H J Biol Chem; 2003 Aug; 278(34):32266-74. PubMed ID: 12805360 [TBL] [Abstract][Full Text] [Related]
3. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Haug G; Wilde C; Leemhuis J; Meyer DK; Aktories K; Barth H Biochemistry; 2003 Dec; 42(51):15284-91. PubMed ID: 14690438 [TBL] [Abstract][Full Text] [Related]
4. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Kaiser E; Böhm N; Ernst K; Langer S; Schwan C; Aktories K; Popoff M; Fischer G; Barth H Cell Microbiol; 2012 Aug; 14(8):1193-205. PubMed ID: 22420783 [TBL] [Abstract][Full Text] [Related]
5. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Blöcker D; Bachmeyer C; Benz R; Aktories K; Barth H Biochemistry; 2003 May; 42(18):5368-77. PubMed ID: 12731878 [TBL] [Abstract][Full Text] [Related]
6. The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components. Barth H; Roebling R; Fritz M; Aktories K J Biol Chem; 2002 Feb; 277(7):5074-81. PubMed ID: 11741886 [TBL] [Abstract][Full Text] [Related]
7. Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction. Kaiser E; Haug G; Hliscs M; Aktories K; Barth H Biochemistry; 2006 Nov; 45(44):13361-8. PubMed ID: 17073457 [TBL] [Abstract][Full Text] [Related]
8. The Pore-Forming Subunit C2IIa of the Binary Eisele J; Schreiner S; Borho J; Fischer S; Heber S; Endres S; Fellermann M; Wohlgemuth L; Huber-Lang M; Fois G; Fauler M; Frick M; Barth H Front Pharmacol; 2022; 13():810611. PubMed ID: 35222028 [TBL] [Abstract][Full Text] [Related]
9. Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. Barth H; Blocker D; Behlke J; Bergsma-Schutter W; Brisson A; Benz R; Aktories K J Biol Chem; 2000 Jun; 275(25):18704-11. PubMed ID: 10749859 [TBL] [Abstract][Full Text] [Related]
10. Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Kaiser E; Pust S; Kroll C; Barth H Cell Microbiol; 2009 May; 11(5):780-95. PubMed ID: 19159389 [TBL] [Abstract][Full Text] [Related]
12. Combined Pharmacological Inhibition of Cyclophilins, FK506-Binding Proteins, Hsp90, and Hsp70 Protects Cells From Ernst K; Kling C; Landenberger M; Barth H Front Pharmacol; 2018; 9():1287. PubMed ID: 30483129 [TBL] [Abstract][Full Text] [Related]
14. Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Bronnhuber A; Maier E; Riedl Z; Hajós G; Benz R; Barth H Toxicology; 2014 Feb; 316():25-33. PubMed ID: 24394545 [TBL] [Abstract][Full Text] [Related]
15. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Kreidler AM; Benz R; Barth H Arch Toxicol; 2017 Mar; 91(3):1431-1445. PubMed ID: 27106023 [TBL] [Abstract][Full Text] [Related]
16. Binding and internalization of Clostridium botulinum C2 toxin. Nagahama M; Hagiyama T; Kojima T; Aoyanagi K; Takahashi C; Oda M; Sakaguchi Y; Oguma K; Sakurai J Infect Immun; 2009 Nov; 77(11):5139-48. PubMed ID: 19720757 [TBL] [Abstract][Full Text] [Related]
17. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin. Aktories K; Barth H Int J Med Microbiol; 2004 Apr; 293(7-8):557-64. PubMed ID: 15149031 [TBL] [Abstract][Full Text] [Related]
18. Alpha-1 antitrypsin inhibits Clostridium botulinum C2 toxin, Corynebacterium diphtheriae diphtheria toxin and B. anthracis fusion toxin. Lietz S; Sokolowski LM; Barth H; Ernst K Sci Rep; 2024 Sep; 14(1):21257. PubMed ID: 39261531 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300. Sterthoff C; Lang AE; Schwan C; Tauch A; Aktories K Infect Immun; 2010 Apr; 78(4):1468-74. PubMed ID: 20145093 [TBL] [Abstract][Full Text] [Related]
20. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells. Kronhardt A; Beitzinger C; Barth H; Benz R Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27517960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]