These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12869582)

  • 1. Dragon gene start finder: an advanced system for finding approximate locations of the start of gene transcriptional units.
    Bajic VB; Seah SH
    Genome Res; 2003 Aug; 13(8):1923-9. PubMed ID: 12869582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High sensitivity TSS prediction: estimates of locations where TSS cannot occur.
    Schaefer U; Kodzius R; Kai C; Kawai J; Carninci P; Hayashizaki Y; Bajic VB
    PLoS One; 2010 Nov; 5(11):e13934. PubMed ID: 21085627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dragon Gene Start Finder identifies approximate locations of the 5' ends of genes.
    Bajic VB; Seah SH
    Nucleic Acids Res; 2003 Jul; 31(13):3560-3. PubMed ID: 12824365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates.
    Bajic VB; Seah SH; Chong A; Krishnan SP; Koh JL; Brusic V
    J Mol Graph Model; 2003 Mar; 21(5):323-32. PubMed ID: 12543131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation.
    Čuklina J; Hahn J; Imakaev M; Omasits U; Förstner KU; Ljubimov N; Goebel M; Pessi G; Fischer HM; Ahrens CH; Gelfand MS; Evguenieva-Hackenberg E
    BMC Genomics; 2016 Apr; 17():302. PubMed ID: 27107716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy improvement for identifying translation initiation sites in microbial genomes.
    Zhu HQ; Hu GQ; Ouyang ZQ; Wang J; She ZS
    Bioinformatics; 2004 Dec; 20(18):3308-17. PubMed ID: 15247104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale human promoter mapping using CpG islands.
    Ioshikhes IP; Zhang MQ
    Nat Genet; 2000 Sep; 26(1):61-3. PubMed ID: 10973249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LDB2000: sequence-based integrated maps of the human genome.
    Ke X; Tapper W; Collins A
    Bioinformatics; 2001 Jul; 17(7):581-6. PubMed ID: 11448876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TIPR: transcription initiation pattern recognition on a genome scale.
    Morton T; Wong WK; Megraw M
    Bioinformatics; 2015 Dec; 31(23):3725-32. PubMed ID: 26254489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity.
    Yamashita R; Suzuki Y; Sugano S; Nakai K
    Gene; 2005 May; 350(2):129-36. PubMed ID: 15784181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using CorePromoter to find human core promoters.
    Zhang MQ
    Curr Protoc Bioinformatics; 2005 Jul; Chapter 2():Unit 2.9. PubMed ID: 18428749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22.
    Harrison PM; Hegyi H; Balasubramanian S; Luscombe NM; Bertone P; Echols N; Johnson T; Gerstein M
    Genome Res; 2002 Feb; 12(2):272-80. PubMed ID: 11827946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome.
    Li C; Lenhard B; Luscombe NM
    Genome Res; 2018 May; 28(5):676-688. PubMed ID: 29618487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis.
    Yokomori R; Shimai K; Nishitsuji K; Suzuki Y; Kusakabe TG; Nakai K
    Genome Res; 2016 Jan; 26(1):140-50. PubMed ID: 26668163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of transcription start sites based on feature selection using AMOSA.
    Wang X; Bandyopadhyay S; Xuan Z; Zhao X; Zhang MQ; Zhang X
    Comput Syst Bioinformatics Conf; 2007; 6():183-93. PubMed ID: 17951823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GS-Finder: a program to find bacterial gene start sites with a self-training method.
    Ou HY; Guo FB; Zhang CT
    Int J Biochem Cell Biol; 2004 Mar; 36(3):535-44. PubMed ID: 14687930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens.
    Prados J; Linder P; Redder P
    BMC Genomics; 2016 Nov; 17(1):849. PubMed ID: 27806702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple testing methods for ChIP-Chip high density oligonucleotide array data.
    Keleş S; van der Laan MJ; Dudoit S; Cawley SE
    J Comput Biol; 2006 Apr; 13(3):579-613. PubMed ID: 16706714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation initiation site prediction on a genomic scale: beauty in simplicity.
    Saeys Y; Abeel T; Degroeve S; Van de Peer Y
    Bioinformatics; 2007 Jul; 23(13):i418-23. PubMed ID: 17646326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global identification of transcription start sites in the genome of Apis mellifera using 5'LongSAGE.
    Zheng H; Sun L; Peng W; Shen Y; Wang Y; Xu B; Gu W; Chen S; Huang Z; Wang S
    J Exp Zool B Mol Dev Evol; 2011 Nov; 316(7):500-14. PubMed ID: 21695780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.