These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12869702)

  • 21. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA.
    Douthwaite S
    Nucleic Acids Res; 1992 Sep; 20(18):4717-20. PubMed ID: 1383931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum mechanical tunnelling through the catalytic effects of A2451 ribosomal residue during a stepwise peptide bond formation.
    Monajemi H; Md Zain S; Ishida T; Wan Abdullah WAT
    Biochem Cell Biol; 2019 Aug; 97(4):497-503. PubMed ID: 30444637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phenotype of mutations of the base-pair C2658.G2663 that closes the tetraloop in the sarcin/ricin domain of Escherichia coli 23 S ribosomal RNA.
    Chan YL; Sitikov AS; Wool IG
    J Mol Biol; 2000 May; 298(5):795-805. PubMed ID: 10801349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity.
    Brunelle JL; Youngman EM; Sharma D; Green R
    RNA; 2006 Jan; 12(1):33-9. PubMed ID: 16373492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?
    Sharma PK; Xiang Y; Kato M; Warshel A
    Biochemistry; 2005 Aug; 44(34):11307-14. PubMed ID: 16114867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis.
    Lang K; Erlacher M; Wilson DN; Micura R; Polacek N
    Chem Biol; 2008 May; 15(5):485-92. PubMed ID: 18439847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribosomal crystallography: peptide bond formation and its inhibition.
    Bashan A; Zarivach R; Schluenzen F; Agmon I; Harms J; Auerbach T; Baram D; Berisio R; Bartels H; Hansen HA; Fucini P; Wilson D; Peretz M; Kessler M; Yonath A
    Biopolymers; 2003 Sep; 70(1):19-41. PubMed ID: 12925991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system.
    Tamura K; Schimmel P
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1393-7. PubMed ID: 11171961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transition State Charge Stabilization and Acid-Base Catalysis of mRNA Cleavage by the Endoribonuclease RelE.
    Dunican BF; Hiller DA; Strobel SA
    Biochemistry; 2015 Dec; 54(47):7048-57. PubMed ID: 26535789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(2):567-80. PubMed ID: 9878430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum chemical study of ester aminolysis catalyzed by a single adenine: a reference reaction for the ribosomal peptide synthesis.
    Suárez D; Merz KM
    J Am Chem Soc; 2001 Aug; 123(31):7687-90. PubMed ID: 11480992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N
    J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome.
    Byun BJ; Kang YK
    Phys Chem Chem Phys; 2013 Sep; 15(36):14931-5. PubMed ID: 23900690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The path of the growing peptide chain through the 23S rRNA in the 50S ribosomal subunit; a comparative cross-linking study with three different peptide families.
    Choi KM; Brimacombe R
    Nucleic Acids Res; 1998 Feb; 26(4):887-95. PubMed ID: 9461444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome.
    Carrasco N; Hiller DA; Strobel SA
    Biochemistry; 2011 Dec; 50(48):10491-8. PubMed ID: 22035282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of peptide bond synthesis on the ribosome.
    Trobro S; Aqvist J
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12395-400. PubMed ID: 16116099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function of the ribosomal E-site: a mutagenesis study.
    Sergiev PV; Lesnyak DV; Kiparisov SV; Burakovsky DE; Leonov AA; Bogdanov AA; Brimacombe R; Dontsova OA
    Nucleic Acids Res; 2005; 33(18):6048-56. PubMed ID: 16243787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome.
    Semenkov YP; Rodnina MV; Wintermeyer W
    Nat Struct Biol; 2000 Nov; 7(11):1027-31. PubMed ID: 11062557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.