These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12869702)

  • 41. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.
    Fung AW; Ebhardt HA; Abeysundara H; Moore J; Xu Z; Fahlman RP
    J Mol Biol; 2011 Jun; 409(4):617-29. PubMed ID: 21530538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural and functional prerequisites for ribosomal nascent peptide acceptors: attempts to decipher the nature of the ribosome's catalysis of peptide bond formation.
    Michel BY; Krishnakumar KS; Johansson M; Ehrenberg M; Strazewski P
    Nucleic Acids Symp Ser (Oxf); 2008; (52):33-4. PubMed ID: 18776239
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Peptidyltransferase center of ribosomes. Structure and relationship to other ribosomal functions].
    Kukhanova MK; Kraevskiĭ AA; Gottikh BP
    Mol Biol (Mosk); 1977; 11(6):1357-76. PubMed ID: 36555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The path to perdition is paved with protons.
    Green R; Lorsch JR
    Cell; 2002 Sep; 110(6):665-8. PubMed ID: 12297040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A two-step chemical mechanism for ribosome-catalysed peptide bond formation.
    Hiller DA; Singh V; Zhong M; Strobel SA
    Nature; 2011 Jul; 476(7359):236-9. PubMed ID: 21765427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and functional analysis of Escherichia coli ribosomes containing small deletions around position 1760 in the 23S ribosomal RNA.
    Zweib C; Dahlberg AE
    Nucleic Acids Res; 1984 Sep; 12(18):7135-52. PubMed ID: 6091057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H; Yamamoto H; Uchiumi T; Wada A
    Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Positively Charged Active Site of the Bacterial Toxin RelE Causes a Large Shift in the General Base p
    Hiller DA; Dunican BF; Nallur S; Li NS; Piccirilli JA; Strobel SA
    Biochemistry; 2020 May; 59(17):1665-1671. PubMed ID: 32320214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clindamycin binding to ribosomes revisited: foot printing and computational detection of two binding sites within the peptidyl transferase center.
    Kostopoulou ON; Papadopoulos G; Kouvela EC; Kalpaxis DL
    Pharmazie; 2013 Jul; 68(7):616-21. PubMed ID: 23923646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of disruptions in ribosomal active sites and in intersubunit contacts on ribosomal degradation in Escherichia coli.
    Paier A; Leppik M; Soosaar A; Tenson T; Maiväli Ü
    Sci Rep; 2015 Jan; 5():7712. PubMed ID: 25578614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dominant lethal mutations in a conserved loop in 16S rRNA.
    Powers T; Noller HF
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1042-6. PubMed ID: 2405392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2.
    Kitahara K; Kajiura A; Sato NS; Suzuki T
    Nucleic Acids Res; 2007; 35(12):4018-29. PubMed ID: 17553838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum-mechanical study on the mechanism of peptide bond formation in the ribosome.
    Acosta-Silva C; Bertran J; Branchadell V; Oliva A
    J Am Chem Soc; 2012 Apr; 134(13):5817-31. PubMed ID: 22376156
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of a fluorine-substituted puromycin derivative for Brønsted studies of ribosomal-catalyzed peptide bond formation.
    Okuda K; Hirota T; Kingery DA; Nagasawa H
    J Org Chem; 2009 Mar; 74(6):2609-12. PubMed ID: 19284740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of induction of rRNA overproduction on ribosomal protein synthesis and ribosome subunit assembly in Escherichia coli.
    Yamagishi M; Nomura M
    J Bacteriol; 1988 Nov; 170(11):5042-50. PubMed ID: 3053641
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical Study of the Mechanism of Ribosomal Peptide Bond Formation Using the ONIOM Method.
    Fukushima K; Esaki H
    Chem Pharm Bull (Tokyo); 2021; 69(8):734-740. PubMed ID: 34334517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.