BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 12870)

  • 1. Stable mutants of mammalian cells that overproduce the first three enzymes of pyrimidine nucleotide biosynthesis.
    Kempe TD; Swyryd EA; Bruist M; Stark GR
    Cell; 1976 Dec; 9(4 Pt 1):541-50. PubMed ID: 12870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overproduction of the first three enzymes of pyrimidine nucleotide biosynthesis in Drosophila cells resistant to N-phosphonacetyl-L-aspartate.
    Laval M; Azou Y; Giorgi D; Rosset R
    Exp Cell Res; 1986 Apr; 163(2):381-95. PubMed ID: 2869965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of single-step mutants of Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate.
    Zieg J; Clayton CE; Ardeshir F; Giulotto E; Swyryd EA; Stark GR
    Mol Cell Biol; 1983 Nov; 3(11):2089-98. PubMed ID: 6656764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of resistance of variants of the Lewis lung carcinoma to N-(phosphonacetyl)-L-aspartic acid.
    Kensler TW; Mutter G; Hankerson JG; Reck LJ; Harley C; Han N; Ardalan B; Cysyk RL; Johnson RK; Jayaram HN; Cooney DA
    Cancer Res; 1981 Mar; 41(3):894-904. PubMed ID: 7459875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinate synthesis of the enzymes of pyrimidine biosynthesis in Bacillus subtilis.
    Paulus TJ; McGarry TJ; Shekelle PG; Rosenzweig S; Switzer RL
    J Bacteriol; 1982 Feb; 149(2):775-8. PubMed ID: 6120161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The overall synthesis of L-5,6-dihydroorotate by multienzymatic protein pyr1-3 from hamster cells. Kinetic studies, substrate channeling, and the effects of inhibitors.
    Christopherson RI; Jones ME
    J Biol Chem; 1980 Dec; 255(23):11381-95. PubMed ID: 6108323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uracil nucleotide synthesis in a human breast cancer cell line (MCF-7) and in two drug-resistant sublines that contain increased levels of enzymes of the de novo pyrimidine pathway.
    Karle JM; Cowan KH; Chisena CA; Cysyk RL
    Mol Pharmacol; 1986 Aug; 30(2):136-41. PubMed ID: 2874477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemotherapeutic inhibitors of the enzymes of the de novo pyrimidine pathway.
    Kensler TW; Cooney DA
    Adv Pharmacol Chemother; 1981; 18():273-352. PubMed ID: 6119898
    [No Abstract]   [Full Text] [Related]  

  • 9. Antipyrimidine effects of five different pyrimidine de novo synthesis inhibitors in three head and neck cancer cell lines.
    Peters GJ
    Nucleosides Nucleotides Nucleic Acids; 2018; 37(6):329-339. PubMed ID: 29723133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of the pathway of de novo pyrimidine nucleotide biosynthesis in pea (Pisum sativum L. cv Progress No. 9) leaves.
    Doremus HD
    Arch Biochem Biophys; 1986 Oct; 250(1):112-9. PubMed ID: 2876681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrimidine and purine enzymes in Toxoplasma gondii.
    O'Sullivan WJ; Johnson AM; Finney KG; Gero AM; Hagon E; Holland JW; Smithers GW
    Aust J Exp Biol Med Sci; 1981 Dec; 59(Pt 6):763-7. PubMed ID: 6122439
    [No Abstract]   [Full Text] [Related]  

  • 12. Enzymes of de novo pyrimidine biosynthesis in Babesia rodhaini.
    Holland JW; Gero AM; O'Sullivan WJ
    J Protozool; 1983 Feb; 30(1):36-40. PubMed ID: 6134826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of acivicin and PALA, singly and in combination, on de novo pyrimidine biosynthesis.
    Kensler TW; Jayaram HN; Cooney DA
    Adv Enzyme Regul; 1982; 20():57-73. PubMed ID: 7113804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrimidine biosynthesis.
    Shambaugh GE
    Am J Clin Nutr; 1979 Jun; 32(6):1290-7. PubMed ID: 35970
    [No Abstract]   [Full Text] [Related]  

  • 15. Co-amplification of rRNA genes with CAD genes in N-(phosphonacetyl)-L-aspartate-resistant Syrian hamster cells.
    Wahl GM; Vitto L; Rubnitz J
    Mol Cell Biol; 1983 Nov; 3(11):2066-75. PubMed ID: 6318080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine-dependent carbamoyl-phosphate synthetase and other enzyme activities related to the pyrimidine pathway in spleen of Squalus acanthias (spiny dogfish).
    Anderson PM
    Biochem J; 1989 Jul; 261(2):523-9. PubMed ID: 2570570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of amplified DNA in different Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate.
    Ardeshir F; Giulotto E; Zieg J; Brison O; Liao WS; Stark GR
    Mol Cell Biol; 1983 Nov; 3(11):2076-88. PubMed ID: 6656763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of de novo pyrimidine biosynthesis genes during spermatogenesis in Drosophila melanogaster.
    Porter L; Yang J; Rawls J
    Adv Exp Med Biol; 1994; 370():567-74. PubMed ID: 7660970
    [No Abstract]   [Full Text] [Related]  

  • 19. Multiple mechanisms of N-phosphonacetyl-L-aspartate resistance in human cell lines: carbamyl-P synthetase/aspartate transcarbamylase/dihydro-orotase gene amplification is frequent only when chromosome 2 is rearranged.
    Smith KA; Chernova OB; Groves RP; Stark MB; Martínez JL; Davidson JN; Trent JM; Patterson TE; Agarwal A; Duncan P; Agarwal ML; Stark GR
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1816-21. PubMed ID: 9050862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of N-(phosphonacetyl)-L-aspartate resistant Chinese hamster mutants in the presence of the uridine uptake inhibitor dipyridamole.
    Tessera L; Mucciolo E; Bertoni L; Giulotto E
    Anticancer Res; 1995; 15(1):189-92. PubMed ID: 7733632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.