These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 12870430)
1. siRNAs and shRNAs: skeleton keys to the human genome. Paddison PJ; Hannon GJ Curr Opin Mol Ther; 2003 Jun; 5(3):217-24. PubMed ID: 12870430 [TBL] [Abstract][Full Text] [Related]
2. Competition potency of siRNA is specified by the 5'-half sequence of the guide strand. Yoo JW; Kim S; Lee DK Biochem Biophys Res Commun; 2008 Feb; 367(1):78-83. PubMed ID: 18164261 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of Dicer enhances RNAi-mediated gene silencing by short-hairpin RNAs (shRNAs) in human cells. Mikuma T; Kawasaki H; Yamamoto Y; Taira K Nucleic Acids Symp Ser (Oxf); 2004; (48):191-2. PubMed ID: 17150543 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide sreening by using small-interfering RNA expression libraries. Matsumoto S; Miyagishi M; Taira K Methods Mol Biol; 2007; 360():131-42. PubMed ID: 17172728 [TBL] [Abstract][Full Text] [Related]
5. Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Caplen NJ Gene Ther; 2004 Aug; 11(16):1241-8. PubMed ID: 15292914 [TBL] [Abstract][Full Text] [Related]
7. About the nature of RNA interference. Schmidt FR Appl Microbiol Biotechnol; 2005 Jun; 67(4):429-35. PubMed ID: 15703909 [TBL] [Abstract][Full Text] [Related]
8. Guidelines for the selection of effective short-interfering RNA sequences for functional genomics. Ui-Tei K; Naito Y; Saigo K Methods Mol Biol; 2007; 361():201-16. PubMed ID: 17172713 [TBL] [Abstract][Full Text] [Related]
9. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Watanabe T; Totoki Y; Toyoda A; Kaneda M; Kuramochi-Miyagawa S; Obata Y; Chiba H; Kohara Y; Kono T; Nakano T; Surani MA; Sakaki Y; Sasaki H Nature; 2008 May; 453(7194):539-43. PubMed ID: 18404146 [TBL] [Abstract][Full Text] [Related]
10. Unlocking the potential of the human genome with RNA interference. Hannon GJ; Rossi JJ Nature; 2004 Sep; 431(7006):371-8. PubMed ID: 15372045 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide application of RNAi to the discovery of potential drug targets. Ito M; Kawano K; Miyagishi M; Taira K FEBS Lett; 2005 Oct; 579(26):5988-95. PubMed ID: 16153642 [TBL] [Abstract][Full Text] [Related]
13. Off-target effects associated with long dsRNAs in Drosophila RNAi screens. Moffat J; Reiling JH; Sabatini DM Trends Pharmacol Sci; 2007 Apr; 28(4):149-51. PubMed ID: 17350110 [TBL] [Abstract][Full Text] [Related]
14. A resource for large-scale RNA-interference-based screens in mammals. Paddison PJ; Silva JM; Conklin DS; Schlabach M; Li M; Aruleba S; Balija V; O'Shaughnessy A; Gnoj L; Scobie K; Chang K; Westbrook T; Cleary M; Sachidanandam R; McCombie WR; Elledge SJ; Hannon GJ Nature; 2004 Mar; 428(6981):427-31. PubMed ID: 15042091 [TBL] [Abstract][Full Text] [Related]
15. [Dicer efficiently converts large dsRNAs into siRNAs suitable for COX-2 gene]. Luo H; Hu DX; Chen P Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Jun; 32(3):437-42. PubMed ID: 17611321 [TBL] [Abstract][Full Text] [Related]
16. RNA interference (RNAi) in hematology. Scherr M; Steinmann D; Eder M Ann Hematol; 2004 Jan; 83(1):1-8. PubMed ID: 14574462 [TBL] [Abstract][Full Text] [Related]
17. High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs: functional genomics investigations of biological pathways. Sachse C; Krausz E; Krönke A; Hannus M; Walsh A; Grabner A; Ovcharenko D; Dorris D; Trudel C; Sönnichsen B; Echeverri CJ Methods Enzymol; 2005; 392():242-77. PubMed ID: 15644186 [TBL] [Abstract][Full Text] [Related]
18. The RNAi revolution. Novina CD; Sharp PA Nature; 2004 Jul; 430(6996):161-4. PubMed ID: 15241403 [No Abstract] [Full Text] [Related]