BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 12870440)

  • 1. Exploration of the functional proteome: lessons from lipid rafts.
    Shaw AR; Li L
    Curr Opin Mol Ther; 2003 Jun; 5(3):294-301. PubMed ID: 12870440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes.
    Zhang N; Shaw AR; Li N; Chen R; Mak A; Hu X; Young N; Wishart D; Li L
    Anal Chim Acta; 2008 Oct; 627(1):82-90. PubMed ID: 18790130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of lipid rafts in T cells.
    Thomas S; Kumar RS; Brumeanu TD
    Arch Immunol Ther Exp (Warsz); 2004; 52(4):215-24. PubMed ID: 15467486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics.
    Lin SL; Chien CW; Han CL; Chen ES; Kao SH; Chen YJ; Liao F
    J Proteome Res; 2010 Jan; 9(1):283-97. PubMed ID: 19928914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes.
    Larbi A; Douziech N; Dupuis G; Khalil A; Pelletier H; Guerard KP; Fülöp T
    J Leukoc Biol; 2004 Feb; 75(2):373-81. PubMed ID: 14657209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering.
    Bini L; Pacini S; Liberatori S; Valensin S; Pellegrini M; Raggiaschi R; Pallini V; Baldari CT
    Biochem J; 2003 Jan; 369(Pt 2):301-9. PubMed ID: 12358599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid rafts: heterogeneity on the high seas.
    Pike LJ
    Biochem J; 2004 Mar; 378(Pt 2):281-92. PubMed ID: 14662007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement.
    Nguyen DH; Giri B; Collins G; Taub DD
    Exp Cell Res; 2005 Apr; 304(2):559-69. PubMed ID: 15748900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics.
    Gupta N; Wollscheid B; Watts JD; Scheer B; Aebersold R; DeFranco AL
    Nat Immunol; 2006 Jun; 7(6):625-33. PubMed ID: 16648854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells.
    MacLellan DL; Steen H; Adam RM; Garlick M; Zurakowski D; Gygi SP; Freeman MR; Solomon KR
    Proteomics; 2005 Dec; 5(18):4733-42. PubMed ID: 16267816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome analysis of adipocyte lipid rafts reveals that gC1qR plays essential roles in adipogenesis and insulin signal transduction.
    Kim KB; Kim BW; Choo HJ; Kwon YC; Ahn BY; Choi JS; Lee JS; Ko YG
    Proteomics; 2009 May; 9(9):2373-82. PubMed ID: 19402044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal control of signaling through lipid rafts.
    Golub T; Wacha S; Caroni P
    Curr Opin Neurobiol; 2004 Oct; 14(5):542-50. PubMed ID: 15464886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts.
    Paradela A; Bravo SB; Henríquez M; Riquelme G; Gavilanes F; González-Ros JM; Albar JP
    J Proteome Res; 2005; 4(6):2435-41. PubMed ID: 16335998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells.
    Eramo A; Sargiacomo M; Ricci-Vitiani L; Todaro M; Stassi G; Messina CG; Parolini I; Lotti F; Sette G; Peschle C; De Maria R
    Eur J Immunol; 2004 Jul; 34(7):1930-40. PubMed ID: 15214041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and biochemical characterisation of lipid rafts from Atlantic cod (Gadus morhua) intestinal enterocytes.
    Gylfason GA; Knútsdóttir E; Asgeirsson B
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Jan; 155(1):86-95. PubMed ID: 19854289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging.
    Larbi A; Douziech N; Khalil A; Dupuis G; Gheraïri S; Guérard KP; Fülöp T
    Exp Gerontol; 2004 Apr; 39(4):551-8. PubMed ID: 15050290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving closer to the lipid raft proteome using quantitative proteomics.
    Foster LJ
    Methods Mol Biol; 2009; 528():189-99. PubMed ID: 19153694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction.
    Kamata K; Manno S; Ozaki M; Takakuwa Y
    Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.