These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 12870440)
1. Exploration of the functional proteome: lessons from lipid rafts. Shaw AR; Li L Curr Opin Mol Ther; 2003 Jun; 5(3):294-301. PubMed ID: 12870440 [TBL] [Abstract][Full Text] [Related]
2. Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes. Zhang N; Shaw AR; Li N; Chen R; Mak A; Hu X; Young N; Wishart D; Li L Anal Chim Acta; 2008 Oct; 627(1):82-90. PubMed ID: 18790130 [TBL] [Abstract][Full Text] [Related]
3. Role of lipid rafts in T cells. Thomas S; Kumar RS; Brumeanu TD Arch Immunol Ther Exp (Warsz); 2004; 52(4):215-24. PubMed ID: 15467486 [TBL] [Abstract][Full Text] [Related]
4. Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics. Lin SL; Chien CW; Han CL; Chen ES; Kao SH; Chen YJ; Liao F J Proteome Res; 2010 Jan; 9(1):283-97. PubMed ID: 19928914 [TBL] [Abstract][Full Text] [Related]
5. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. Larbi A; Douziech N; Dupuis G; Khalil A; Pelletier H; Guerard KP; Fülöp T J Leukoc Biol; 2004 Feb; 75(2):373-81. PubMed ID: 14657209 [TBL] [Abstract][Full Text] [Related]
6. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Bini L; Pacini S; Liberatori S; Valensin S; Pellegrini M; Raggiaschi R; Pallini V; Baldari CT Biochem J; 2003 Jan; 369(Pt 2):301-9. PubMed ID: 12358599 [TBL] [Abstract][Full Text] [Related]
7. Lipid rafts: heterogeneity on the high seas. Pike LJ Biochem J; 2004 Mar; 378(Pt 2):281-92. PubMed ID: 14662007 [TBL] [Abstract][Full Text] [Related]
8. Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement. Nguyen DH; Giri B; Collins G; Taub DD Exp Cell Res; 2005 Apr; 304(2):559-69. PubMed ID: 15748900 [TBL] [Abstract][Full Text] [Related]
9. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis. Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029 [TBL] [Abstract][Full Text] [Related]
11. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells. MacLellan DL; Steen H; Adam RM; Garlick M; Zurakowski D; Gygi SP; Freeman MR; Solomon KR Proteomics; 2005 Dec; 5(18):4733-42. PubMed ID: 16267816 [TBL] [Abstract][Full Text] [Related]
12. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes. Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971 [TBL] [Abstract][Full Text] [Related]
13. Proteome analysis of adipocyte lipid rafts reveals that gC1qR plays essential roles in adipogenesis and insulin signal transduction. Kim KB; Kim BW; Choo HJ; Kwon YC; Ahn BY; Choi JS; Lee JS; Ko YG Proteomics; 2009 May; 9(9):2373-82. PubMed ID: 19402044 [TBL] [Abstract][Full Text] [Related]
14. Spatial and temporal control of signaling through lipid rafts. Golub T; Wacha S; Caroni P Curr Opin Neurobiol; 2004 Oct; 14(5):542-50. PubMed ID: 15464886 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts. Paradela A; Bravo SB; Henríquez M; Riquelme G; Gavilanes F; González-Ros JM; Albar JP J Proteome Res; 2005; 4(6):2435-41. PubMed ID: 16335998 [TBL] [Abstract][Full Text] [Related]
16. CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eramo A; Sargiacomo M; Ricci-Vitiani L; Todaro M; Stassi G; Messina CG; Parolini I; Lotti F; Sette G; Peschle C; De Maria R Eur J Immunol; 2004 Jul; 34(7):1930-40. PubMed ID: 15214041 [TBL] [Abstract][Full Text] [Related]
17. Isolation and biochemical characterisation of lipid rafts from Atlantic cod (Gadus morhua) intestinal enterocytes. Gylfason GA; Knútsdóttir E; Asgeirsson B Comp Biochem Physiol B Biochem Mol Biol; 2010 Jan; 155(1):86-95. PubMed ID: 19854289 [TBL] [Abstract][Full Text] [Related]
18. Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging. Larbi A; Douziech N; Khalil A; Dupuis G; Gheraïri S; Guérard KP; Fülöp T Exp Gerontol; 2004 Apr; 39(4):551-8. PubMed ID: 15050290 [TBL] [Abstract][Full Text] [Related]
19. Moving closer to the lipid raft proteome using quantitative proteomics. Foster LJ Methods Mol Biol; 2009; 528():189-99. PubMed ID: 19153694 [TBL] [Abstract][Full Text] [Related]
20. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction. Kamata K; Manno S; Ozaki M; Takakuwa Y Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]