BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12870578)

  • 1. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera.
    Godavarty A; Eppstein MJ; Zhang C; Theru S; Thompson AB; Gurfinkel M; Sevick-Muraca EM
    Phys Med Biol; 2003 Jun; 48(12):1701-20. PubMed ID: 12870578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry.
    Roy R; Thompson AB; Godavarty A; Sevick-Muraca EM
    IEEE Trans Med Imaging; 2005 Feb; 24(2):137-54. PubMed ID: 15707240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study.
    Godavarty A; Eppstein MJ; Zhang C; Sevick-Muraca EM
    Radiology; 2005 Apr; 235(1):148-54. PubMed ID: 15798170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging.
    Culver JP; Choe R; Holboke MJ; Zubkov L; Durduran T; Slemp A; Ntziachristos V; Chance B; Yodh AG
    Med Phys; 2003 Feb; 30(2):235-47. PubMed ID: 12607841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional fluorescence lifetime tomography.
    Godavarty A; Sevick-Muraca EM; Eppstein MJ
    Med Phys; 2005 Apr; 32(4):992-1000. PubMed ID: 15895582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media.
    Ntziachristos V; Weissleder R
    Med Phys; 2002 May; 29(5):803-9. PubMed ID: 12033576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.
    Ge J; Zhu B; Regalado S; Godavarty A
    Med Phys; 2008 Jul; 35(7):3354-63. PubMed ID: 18697559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies.
    Godavarty A; Thompson AB; Roy R; Gurfinkel M; Eppstein MJ; Zhang C; Sevick-Muraca EM
    J Biomed Opt; 2004; 9(3):488-96. PubMed ID: 15189086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated coregistered imaging using a hand-held probe-based optical imager.
    Regalado S; Erickson SJ; Zhu B; Ge J; Godavarty A
    Rev Sci Instrum; 2010 Feb; 81(2):023702. PubMed ID: 20192497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries.
    Godavarty A; Zhang C; Eppstein MJ; Sevick-Muraca EM
    Med Phys; 2004 Feb; 31(2):183-90. PubMed ID: 15000603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection.
    Joshi A; Bangerth W; Hwang K; Rasmussen JC; Sevick-Muraca EM
    Med Phys; 2006 May; 33(5):1299-310. PubMed ID: 16752565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical image reconstruction using DC data: simulations and experiments.
    Jiang H; Paulsen KD; Osterberg UL
    Phys Med Biol; 1996 Aug; 41(8):1483-98. PubMed ID: 8858732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigated non-contact fluorescence tomography.
    Daly MJ; Wilson BC; Irish JC; Jaffray DA
    Phys Med Biol; 2019 Jul; 64(13):135021. PubMed ID: 31276450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies.
    Ge J; Erickson SJ; Godavarty A
    Appl Opt; 2009 Nov; 48(33):6408-16. PubMed ID: 19935959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.
    Thompson AB; Sevick-Muraca EM
    J Biomed Opt; 2003 Jan; 8(1):111-20. PubMed ID: 12542387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging.
    Andreozzi JM; Zhang R; Glaser AK; Jarvis LA; Pogue BW; Gladstone DJ
    Med Phys; 2015 Feb; 42(2):994-1004. PubMed ID: 25652512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media.
    Hall DJ; Hebden JC; Delpy DT
    Med Phys; 1997 Mar; 24(3):361-8. PubMed ID: 9089587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo human retinal imaging by Fourier domain optical coherence tomography.
    Wojtkowski M; Leitgeb R; Kowalczyk A; Bajraszewski T; Fercher AF
    J Biomed Opt; 2002 Jul; 7(3):457-63. PubMed ID: 12175297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared fluorescence contrast-enhanced imaging with area illumination and area detection: the forward imaging problem.
    Thompson AB; Hawrysz DJ; Sevick-Muraca EM
    Appl Opt; 2003 Jul; 42(19):4125-36. PubMed ID: 12868856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.