BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12870707)

  • 1. The influence of oxidative stress on microviscosity of hemoglobin-containing liposomes.
    Górnicki A
    Gen Physiol Biophys; 2003 Mar; 22(1):121-7. PubMed ID: 12870707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.
    Arifin DR; Palmer AF
    Biotechnol Prog; 2003; 19(6):1798-811. PubMed ID: 14656159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes.
    Li S; Nickels J; Palmer AF
    Biomaterials; 2005 Jun; 26(17):3759-69. PubMed ID: 15621266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes.
    Sakai H; Okuda N; Takeoka S; Tsuchida E
    Microvasc Res; 2011 Mar; 81(2):169-76. PubMed ID: 21167845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparin coated poly(alkylcyanoacrylate) nanoparticles coupled to hemoglobin: a new oxygen carrier.
    Chauvierre C; Marden MC; Vauthier C; Labarre D; Couvreur P; Leclerc L
    Biomaterials; 2004 Jul; 25(15):3081-6. PubMed ID: 14967542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of hemoglobin-vesicles (artificial oxygen carriers) and their influence on organ functions in a rat model.
    Sakai H; Horinouchi H; Masada Y; Takeoka S; Ikeda E; Takaori M; Kobayashi K; Tsuchida E
    Biomaterials; 2004 Aug; 25(18):4317-25. PubMed ID: 15046922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane Difference in Colloid Osmotic Pressure Affects the Lipid Membrane Fluidity of Liposomes Encapsulating a Concentrated Protein Solution.
    Kure T; Sakai H
    Langmuir; 2017 Feb; 33(6):1533-1540. PubMed ID: 28106401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin-vesicles as an artificial oxygen carrier.
    Sakai H; Sou K; Tsuchida E
    Methods Enzymol; 2009; 465():363-84. PubMed ID: 19913177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetic study of enclosed hemoglobin and outer lipid component after the administration of hemoglobin vesicles as an artificial oxygen carrier.
    Taguchi K; Urata Y; Anraku M; Maruyama T; Watanabe H; Sakai H; Horinouchi H; Kobayashi K; Tsuchida E; Kai T; Otagiri M
    Drug Metab Dispos; 2009 Jul; 37(7):1456-63. PubMed ID: 19364827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation and denaturation of hemoglobin encapsulated in liposomes.
    Szebeni J; Breuer JH; Szelenyi JG; Bathori G; Lelkes G; Hollan SR
    Biochim Biophys Acta; 1984 Mar; 798(1):60-7. PubMed ID: 6704423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing the in vitro stability of artificial red blood cells based on hemoglobin-containing liposomes.
    Szebeni J; Hauser H; Eskelson CD; Winterhalter KH
    Biomater Artif Cells Artif Organs; 1988; 16(1-3):301-12. PubMed ID: 3179471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liposome-Encapsulated Hemoglobin, TRM-645: Current Status of the Development and Important Issues for Clinical Application.
    Kaneda S; Ishizuka T; Goto H; Kimura T; Inaba K; Kasukawa H
    Artif Organs; 2009 Feb; 33(2):146-52. PubMed ID: 19178459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dinitrosyl iron complexes bind with hemoglobin as markers of oxidative stress.
    Shumaev KB; Kosmachevskaya OV; Timoshin AA; Vanin AF; Topunov AF
    Methods Enzymol; 2008; 436():445-61. PubMed ID: 18237648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of direct oxygenation of primary-cultured rat hepatocytes using polyethylene glycol-decorated liposome-encapsulated hemoglobin (LEH).
    Naruto H; Huang H; Nishikawa M; Kojima N; Mizuno A; Ohta K; Sakai Y
    J Biosci Bioeng; 2007 Oct; 104(4):343-6. PubMed ID: 18023811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.
    Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE
    Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of liposomes encapsulating hemoglobin as potential blood substitutes.
    Mobed M; Nishiya T; Chang TM
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(1):53-70. PubMed ID: 1617086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical properties of hemoglobin vesicles as red cell substitutes.
    Sakai H; Hamada K; Takeoka S; Nishide H; Tsuchida E
    Biotechnol Prog; 1996; 12(1):119-25. PubMed ID: 8845102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performances of PEG-modified hemoglobin-vesicles as artificial oxygen carriers in microcirculation.
    Sakai H; Tsuchida E
    Clin Hemorheol Microcirc; 2006; 34(1-2):335-40. PubMed ID: 16543654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.