These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12870846)

  • 1. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.
    Gorton HL; Vogelmann TC
    Photochem Photobiol; 2003 Jun; 77(6):608-15. PubMed ID: 12870846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille.
    Gorton HL; Williams WE; Vogelmann TC
    Photochem Photobiol; 2001 Jun; 73(6):611-20. PubMed ID: 11421066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry.
    Stibal M; Elster J; Sabacká M; Kastovská K
    FEMS Microbiol Ecol; 2007 Feb; 59(2):265-73. PubMed ID: 17313577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow.
    Remias D; Pichrtová M; Pangratz M; Lütz C; Holzinger A
    FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw030. PubMed ID: 26884467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysts of the Snow Alga
    Procházková L; Remias D; Bilger W; Křížková H; Řezanka T; Nedbalová L
    Front Plant Sci; 2020; 11():617250. PubMed ID: 33391329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and quantification of snow algae with an airborne imaging spectrometer.
    Painter TH; Duval B; Thomas WH; Mendez M; Heintzelman S; Dozier J
    Appl Environ Microbiol; 2001 Nov; 67(11):5267-72. PubMed ID: 11679355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.
    Rezanka T; Nedbalová L; Sigler K; Cepák V
    Phytochemistry; 2008 Jan; 69(2):479-90. PubMed ID: 17681561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LC-MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers.
    Řezanka T; Nedbalová L; Kolouchová I; Sigler K
    Phytochemistry; 2013 Apr; 88():34-42. PubMed ID: 23398889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold Adaptation Mechanisms of a Snow Alga
    Peng Z; Liu G; Huang K
    Front Microbiol; 2020; 11():611080. PubMed ID: 33584575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ice nucleation activity of extremophilic algae.
    Kviderova J; Hajek J; Worland RM
    Cryo Letters; 2013; 34(2):137-48. PubMed ID: 23625082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Temperature Adaptation of the Snow Alga
    Zheng Y; Xue C; Chen H; He C; Wang Q
    Front Microbiol; 2020; 11():1233. PubMed ID: 32587584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers-Possibilities for Detecting Carotenoids of Psychrophiles on Mars?
    Jehlička J; Culka A; Nedbalová L
    Astrobiology; 2016 Dec; 16(12):913-924. PubMed ID: 27901343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecophysiological and morphological comparison of two populations of
    Procházková L; Remias D; Holzinger A; Řezanka T; Nedbalová L
    Eur J Phycol; 2018; 53(2):230-243. PubMed ID: 29755214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface gas-exchange processes of snow algae.
    Williams WE; Gorton HL; Vogelmann TC
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):562-6. PubMed ID: 12518048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RED SNOW CAUSED BY A NEW SPECIES OF TRACHELOMONAS(1) (2).
    Hardy JT; Curl H
    J Phycol; 1968 Mar; 4(1):9-12. PubMed ID: 27067766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation.
    Remias D; Karsten U; Lütz C; Leya T
    Protoplasma; 2010 Jul; 243(1-4):73-86. PubMed ID: 20229328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of ionizing radiation on intraocular lenses.
    Ellerin BE; Nisce LZ; Roberts CW; Thornell C; Sabbas A; Wang H; Li PM; Nori D
    Int J Radiat Oncol Biol Phys; 2001 Sep; 51(1):184-208. PubMed ID: 11516869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural UV-Screening Mechanisms of Norway Spruce (Picea abies [L.] Karst.) Needles.
    Hoque E; Remus G
    Photochem Photobiol; 1999 Feb; 69(2):177-192. PubMed ID: 29608029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission of ultraviolet, visible and near-infrared solar radiation to plants within a seasonal snow pack.
    Robson TM; Aphalo PJ
    Photochem Photobiol Sci; 2019 Aug; 18(8):1963-1971. PubMed ID: 31342042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats.
    Cockell CS; Córdoba-Jabonero C
    Photochem Photobiol; 2004 Jan; 79(1):26-31. PubMed ID: 14974712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.