BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12870895)

  • 1. Analysis of cellular exposure to peroxynitrite in suspension cultures.
    Nalwaya N; Deen WM
    Chem Res Toxicol; 2003 Jul; 16(7):920-32. PubMed ID: 12870895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences.
    Rubbo H; Trostchansky A; O'Donnell VB
    Arch Biochem Biophys; 2009 Apr; 484(2):167-72. PubMed ID: 19022215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals.
    Ferrer-Sueta G; Radi R
    ACS Chem Biol; 2009 Mar; 4(3):161-77. PubMed ID: 19267456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus.
    Chuang YC; Chen SD; Liou CW; Lin TK; Chang WN; Chan SH; Chang AY
    Epilepsia; 2009 Apr; 50(4):731-46. PubMed ID: 19178557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion of peroxynitrite in the presence of carbon dioxide.
    Romero N; Denicola A; Souza JM; Radi R
    Arch Biochem Biophys; 1999 Aug; 368(1):23-30. PubMed ID: 10415107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi.
    Alvarez MN; Piacenza L; Irigoín F; Peluffo G; Radi R
    Arch Biochem Biophys; 2004 Dec; 432(2):222-32. PubMed ID: 15542061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion.
    Quijano C; Romero N; Radi R
    Free Radic Biol Med; 2005 Sep; 39(6):728-41. PubMed ID: 16109303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III).
    Pérez-De La Cruz V; González-Cortés C; Galván-Arzate S; Medina-Campos ON; Pérez-Severiano F; Ali SF; Pedraza-Chaverrí J; Santamaría A
    Neuroscience; 2005; 135(2):463-74. PubMed ID: 16111817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxynitrite reactivity with amino acids and proteins.
    Alvarez B; Radi R
    Amino Acids; 2003 Dec; 25(3-4):295-311. PubMed ID: 14661092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two different pathways are involved in peroxynitrite-induced senescence and apoptosis of human erythrocytes.
    Pietraforte D; Matarrese P; Straface E; Gambardella L; Metere A; Scorza G; Leto TL; Malorni W; Minetti M
    Free Radic Biol Med; 2007 Jan; 42(2):202-14. PubMed ID: 17189826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide diffusion to red blood cells limits extracellular, but not intraphagosomal, peroxynitrite formation by macrophages.
    Prolo C; Álvarez MN; Ríos N; Peluffo G; Radi R; Romero N
    Free Radic Biol Med; 2015 Oct; 87():346-55. PubMed ID: 26119787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide.
    Poderoso JJ
    Arch Biochem Biophys; 2009 Apr; 484(2):214-20. PubMed ID: 19159609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide irreversibly inhibits cytochrome oxidase at low oxygen concentrations: evidence for inverse oxygen concentration-dependent peroxynitrite formation.
    Parihar A; Vaccaro P; Ghafourifar P
    IUBMB Life; 2008 Jan; 60(1):64-7. PubMed ID: 18379993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical analysis of intracellular oxygen diffusion.
    Dutta A; Popel AS
    J Theor Biol; 1995 Oct; 176(4):433-45. PubMed ID: 8551742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of complex III promotes loss of Ca2+ dependence for mitochondrial superoxide formation and permeability transition evoked by peroxynitrite.
    Guidarelli A; Cerioni L; Cantoni O
    J Cell Sci; 2007 Jun; 120(Pt 11):1908-14. PubMed ID: 17504811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin and red blood cells as tools for studying peroxynitrite biochemistry.
    Romero N; Radi R
    Methods Enzymol; 2005; 396():229-45. PubMed ID: 16291236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester to red blood cell membranes to study peroxynitrite-dependent reactions.
    Romero N; Peluffo G; Bartesaghi S; Zhang H; Joseph J; Kalyanaraman B; Radi R
    Chem Res Toxicol; 2007 Nov; 20(11):1638-48. PubMed ID: 17941688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L-type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells.
    Gutiérrez-Martín Y; Martín-Romero FJ; Henao F; Gutiérrez-Merino C
    J Neurochem; 2005 Feb; 92(4):973-89. PubMed ID: 15686499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitrite.
    Vatassery GT; Lai JC; DeMaster EG; Smith WE; Quach HT
    J Neurosci Res; 2004 Mar; 75(6):845-53. PubMed ID: 14994345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial ascorbic acid is responsible for enhanced susceptibility of U937 cells to the toxic effects of peroxynitrite.
    Guidarelli A; Cerioni L; Fiorani M; Azzolini C; Cantoni O
    Biofactors; 2014; 40(2):236-46. PubMed ID: 24105898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.