BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12870908)

  • 1. Molecular quantum similarity analysis of estrogenic activity.
    Gallegos Saliner A; Amat L; Carbó-Dorca R; Schultz TW; Cronin MT
    J Chem Inf Comput Sci; 2003; 43(4):1166-76. PubMed ID: 12870908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional quantitative structure-activity relationship study of nonsteroidal estrogen receptor ligands using the comparative molecular field analysis/cross-validated r2-guided region selection approach.
    Sadler BR; Cho SJ; Ishaq KS; Chae K; Korach KS
    J Med Chem; 1998 Jun; 41(13):2261-7. PubMed ID: 9632359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (13)C NMR and electron ionization mass spectrometric data-activity relationship model of estrogen receptor binding.
    Beger RD; Freeman JP; Lay JO; Wilkes JG; Miller DW
    Toxicol Appl Pharmacol; 2000 Nov; 169(1):17-25. PubMed ID: 11076692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationship study of a diverse set of estrogen receptor ligands (I) using MultiCASE expert system.
    Klopman G; Chakravarti SK
    Chemosphere; 2003 May; 51(6):445-59. PubMed ID: 12615096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens.
    Kovalishyn VV; Kholodovych V; Tetko IV; Welsh WJ
    J Mol Graph Model; 2007 Sep; 26(2):591-4. PubMed ID: 17433745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity.
    Salum LB; Polikarpov I; Andricopulo AD
    J Chem Inf Model; 2008 Nov; 48(11):2243-53. PubMed ID: 18937440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and chemical basis for enhanced affinity and potency for a large series of estrogen receptor ligands: 2D and 3D QSAR studies.
    Salum Lde B; Polikarpov I; Andricopulo AD
    J Mol Graph Model; 2007 Sep; 26(2):434-42. PubMed ID: 17349808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an average mammalian estrogen receptor-based QSAR model.
    Mekenya O; Kamenska V; Serafimova R; Poellinger L; Brouwer A; Walker J
    SAR QSAR Environ Res; 2002 Oct; 13(6):579-95. PubMed ID: 12479373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional model of nonsteroidal estrogen receptor ligand binding/electron topological method.
    Guzel Y; Sivritas K
    Arzneimittelforschung; 2004; 54(6):348-54. PubMed ID: 15281621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase.
    Thakur M; Thakur A; Balasubramanian K
    J Chem Inf Model; 2006; 46(1):103-10. PubMed ID: 16426045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of molecular docking-based binding energy to predict the joint effect of BPA and its analogs.
    Zhang HC; Hu XL; Yin DQ; Lin ZF
    Hum Exp Toxicol; 2011 Apr; 30(4):318-27. PubMed ID: 20511291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the structural requirements of the receptor-binding affinity of diphenolic azoles to estrogen receptors alpha and beta by three-dimensional quantitative structure-activity relationship and structure-activity relationship analysis.
    Demyttenaere-Kovatcheva A; Cronin MT; Benfenati E; Roncaglioni A; Lopiparo E
    J Med Chem; 2005 Dec; 48(24):7628-36. PubMed ID: 16302803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structural characteristics as determinants of estrogen receptor selectivity.
    Agatonovic-Kustrin S; Turner JV; Glass BD
    J Pharm Biomed Anal; 2008 Sep; 48(2):369-75. PubMed ID: 18511229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals.
    Hu JY; Aizawa T
    Water Res; 2003 Mar; 37(6):1213-22. PubMed ID: 12598185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estrogenicity and acute toxicity of selected anilines using a recombinant yeast assay.
    Hamblen EL; Cronin MT; Schultz TW
    Chemosphere; 2003 Aug; 52(7):1173-81. PubMed ID: 12820998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of validated QSAR models of D1 dopaminergic antagonists for database mining.
    Oloff S; Mailman RB; Tropsha A
    J Med Chem; 2005 Nov; 48(23):7322-32. PubMed ID: 16279792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a yeast estrogen screen in non-biomarker species Varicorhinus barbatulus fish with two estrogen receptor subtypes to assess xenoestrogens.
    Fu KY; Chen CY; Chang WM
    Toxicol In Vitro; 2007 Jun; 21(4):604-12. PubMed ID: 17258427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor.
    Fang H; Tong W; Branham WS; Moland CL; Dial SL; Hong H; Xie Q; Perkins R; Owens W; Sheehan DM
    Chem Res Toxicol; 2003 Oct; 16(10):1338-58. PubMed ID: 14565775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods.
    Asikainen A; Kolehmainen M; Ruuskanen J; Tuppurainen K
    Chemosphere; 2006 Jan; 62(4):658-73. PubMed ID: 15992856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.