BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12871137)

  • 1. Gene regulation of aldose-, aldehyde- and a renal specific oxido reductase (RSOR) in the pathobiology of diabetes mellitus.
    Danesh FR; Wada J; Wallner EI; Sahai A; Srivastava SK; Kanwar YS
    Curr Med Chem; 2003 Aug; 10(15):1399-406. PubMed ID: 12871137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relevance of aldo-keto reductase family members to the pathobiology of diabetic nephropathy and renal development.
    Wallner EI; Wada J; Tramonti G; Lin S; Srivastava SK; Kanwar YS
    Ren Fail; 2001; 23(3-4):311-20. PubMed ID: 11499547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis.
    Xie P; Sun L; Oates PJ; Srivastava SK; Kanwar YS
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1393-404. PubMed ID: 20335317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a renal-specific oxido-reductase in newborn diabetic mice.
    Yang Q; Dixit B; Wada J; Tian Y; Wallner EI; Srivastva SK; Kanwar YS
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9896-901. PubMed ID: 10944187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All in the family: aldose reductase and closely related aldo-keto reductases.
    Petrash JM
    Cell Mol Life Sci; 2004 Apr; 61(7-8):737-49. PubMed ID: 15094999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications.
    Wilson DK; Bohren KM; Gabbay KH; Quiocho FA
    Science; 1992 Jul; 257(5066):81-4. PubMed ID: 1621098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications.
    Vander Jagt DL; Robinson B; Taylor KK; Hunsaker LA
    J Biol Chem; 1992 Mar; 267(7):4364-9. PubMed ID: 1537826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human and rodent aldo-keto reductases from the AKR1B subfamily and their specificity with retinaldehyde.
    Ruiz FX; Moro A; Gallego O; Ardèvol A; Rovira C; Petrash JM; Parés X; Farrés J
    Chem Biol Interact; 2011 May; 191(1-3):199-205. PubMed ID: 21329680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new nomenclature for the aldo-keto reductase superfamily.
    Jez JM; Flynn TG; Penning TM
    Biochem Pharmacol; 1997 Sep; 54(6):639-47. PubMed ID: 9310340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of an aldose reductase (bmALD1) obtained from the silkworm Bombyx mori.
    Yamamoto K; Yamaguchi M; Endo S
    Insect Mol Biol; 2020 Oct; 29(5):490-497. PubMed ID: 32681683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aldose and aldehyde reductases from human kidney cortex and medulla.
    Robinson B; Hunsaker LA; Stangebye LA; Vander Jagt DL
    Biochim Biophys Acta; 1993 Dec; 1203(2):260-6. PubMed ID: 8268209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities.
    Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG
    Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases.
    Bohren KM; Bullock B; Wermuth B; Gabbay KH
    J Biol Chem; 1989 Jun; 264(16):9547-51. PubMed ID: 2498333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.
    Spite M; Baba SP; Ahmed Y; Barski OA; Nijhawan K; Petrash JM; Bhatnagar A; Srivastava S
    Biochem J; 2007 Jul; 405(1):95-105. PubMed ID: 17381426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of aldose reductase and aldehyde reductase from human kidney.
    Ansari NH; Bhatnagar A; Liu SQ; Srivastava SK
    Biochem Int; 1991 Nov; 25(4):755-65. PubMed ID: 1815509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization, isolation and properties of three NADPH-dependent aldehyde reducing enzymes from dog kidney.
    Ohta M; Tanimoto T; Tanaka A
    Biochim Biophys Acta; 1991 Jul; 1078(3):395-403. PubMed ID: 1907200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aldo Keto Reductases AKR1B1 and AKR1B10 in Cancer: Molecular Mechanisms and Signaling Networks.
    Banerjee S
    Adv Exp Med Biol; 2021; 1347():65-82. PubMed ID: 33945128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of human aldehyde reductase: characterization of the active site pocket.
    Barski OA; Gabbay KH; Grimshaw CE; Bohren KM
    Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.
    Pastel E; Pointud JC; Martinez A; Lefrançois-Martinez AM
    Front Endocrinol (Lausanne); 2016; 7():97. PubMed ID: 27499746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.