BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12871596)

  • 1. Apoptosis-like death in trypanosomatids: search for putative pathways and genes involved.
    Ouaissi A
    Kinetoplastid Biol Dis; 2003 Jun; 2(1):5. PubMed ID: 12871596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill.
    Menna-Barreto RFS
    Cell Death Dis; 2019 Jan; 10(2):93. PubMed ID: 30700697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptosis in Leishmania species & its relevance to disease pathogenesis.
    Shaha C
    Indian J Med Res; 2006 Mar; 123(3):233-44. PubMed ID: 16778307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed cell death in trypanosomatids and other unicellular organisms.
    Debrabant A; Lee N; Bertholet S; Duncan R; Nakhasi HL
    Int J Parasitol; 2003 Mar; 33(3):257-67. PubMed ID: 12670511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ultimate fate determinants of drug induced cell-death mechanisms in Trypanosomatids.
    Das P; Saha S; BoseDasgupta S
    Int J Parasitol Drugs Drug Resist; 2021 Apr; 15():81-91. PubMed ID: 33601284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death.
    Smirlis D; Duszenko M; Ruiz AJ; Scoulica E; Bastien P; Fasel N; Soteriadou K
    Parasit Vectors; 2010 Nov; 3():107. PubMed ID: 21083891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmed cell death in trypanosomatids: a way to maximize their biological fitness?
    Nguewa PA; Fuertes MA; Valladares B; Alonso C; Pérez JM
    Trends Parasitol; 2004 Aug; 20(8):375-80. PubMed ID: 15246321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypanosomatids topoisomerase re-visited. New structural findings and role in drug discovery.
    Balaña-Fouce R; Alvarez-Velilla R; Fernández-Prada C; García-Estrada C; Reguera RM
    Int J Parasitol Drugs Drug Resist; 2014 Dec; 4(3):326-37. PubMed ID: 25516844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest?
    Debrabant A; Nakhasi H
    Kinetoplastid Biol Dis; 2003 Jun; 2(1):7. PubMed ID: 12848897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B; Garcia CR
    Trop Biomed; 2011 Dec; 28(3):471-81. PubMed ID: 22433874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.
    Kaczanowski S; Sajid M; Reece SE
    Parasit Vectors; 2011 Mar; 4():44. PubMed ID: 21439063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival.
    Ameisen JC; Idziorek T; Billaut-Mulot O; Loyens M; Tissier JP; Potentier A; Ouaissi A
    Cell Death Differ; 1995 Oct; 2(4):285-300. PubMed ID: 17180034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure.
    Rodrigues JC; Godinho JL; de Souza W
    Subcell Biochem; 2014; 74():1-42. PubMed ID: 24264239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal Transduction Pathways as Therapeutic Target for Chagas Disease.
    Schoijet AC; Sternlieb T; Alonso GD
    Curr Med Chem; 2019; 26(36):6572-6589. PubMed ID: 31218950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Drug Targets in the Pentose Phosphate Pathway of Trypanosomatids.
    Loureiro I; Faria J; Santarem N; Smith TK; Tavares J; Cordeiro-da-Silva A
    Curr Med Chem; 2018; 25(39):5239-5265. PubMed ID: 29210635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality.
    De Souza W
    Kinetoplastid Biol Dis; 2002 May; 1(1):3. PubMed ID: 12234386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shedding light on lipid metabolism in Kinetoplastida: A phylogenetic analysis of phospholipase D protein homologs.
    Plonski NM; Bissoni B; Arachchilage MH; Romstedt K; Kooijman EE; Piontkivska H
    Gene; 2018 May; 656():95-105. PubMed ID: 29501621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a RAC/AKT-like gene in Leishmania parasites as a putative therapeutic target in leishmaniasis.
    Varela-M RE; Ochoa R; Muskus CE; Muro A; Mollinedo F
    Parasit Vectors; 2017 Oct; 10(1):458. PubMed ID: 29017516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the intracellular survival gene kit of trypanosomatid parasites.
    Bartholomeu DC; de Paiva RM; Mendes TA; DaRocha WD; Teixeira SM
    PLoS Pathog; 2014 Dec; 10(12):e1004399. PubMed ID: 25474314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.