These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 12871799)

  • 1. Experimental investigation of phase contrast formed by inelastically scattered electrons.
    Kimoto K; Matsui Y
    Ultramicroscopy; 2003 Sep; 96(3-4):335-42. PubMed ID: 12871799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier images feature of lattice fringes formed by low-loss electrons as observed using spatially-resolved EELS technique.
    Kimoto K; Matsui Y
    J Electron Microsc (Tokyo); 2001; 50(5):377-82. PubMed ID: 11794612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-filtered electron-diffracted beam holography.
    Herring RA
    Ultramicroscopy; 2005 Oct; 104(3-4):261-70. PubMed ID: 15996821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron beam coherence measurements using diffracted beam interferometry/holography.
    Herring RA
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):213-21. PubMed ID: 19141592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fringe contrast in inelastic LACBED holography.
    Schattschneider P; Verbeeck J
    Ultramicroscopy; 2008 Apr; 108(5):407-14. PubMed ID: 17656020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decisive factors for realizing atomic-column resolution using STEM and EELS.
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008; 39(3):257-62. PubMed ID: 18054240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Si and Ge low-loss spectra to interpret the Ge contrast in EFTEM images of Si(1-x) Ge(x) nanostructures.
    Pantel R; Cheynet MC; Tichelaar FD
    Micron; 2006; 37(7):657-65. PubMed ID: 16529938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of phonon scattering to high-resolution images measured by off-axis electron holography.
    Boothroyd CB; Dunin-Borkowski RE
    Ultramicroscopy; 2004 Jan; 98(2-4):115-33. PubMed ID: 15046791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth and angular profiles of inelastic low-energy electron scattering in condensed molecular samples.
    Göötz B; Popović DB; David DE; Michl J; Swiderek P
    J Phys Chem B; 2006 Mar; 110(11):5480-5. PubMed ID: 16539486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A holographic biprism as a perfect energy filter?
    Verbeeck J; Bertoni G; Lichte H
    Ultramicroscopy; 2011 Jun; 111(7):887-93. PubMed ID: 21664550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherence of k-space electrons: application to TDS electrons by DBI.
    Herring RA
    Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S99-108. PubMed ID: 23536697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of the anisotropy of the inelastic scattering of fast electrons accompanied by the K-shell ionization of a carbon nanotube.
    Saitoh K; Nagasaka K; Tanaka N
    J Electron Microsc (Tokyo); 2006 Dec; 55(6):281-8. PubMed ID: 17303621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: elastic scattering.
    Cosgriff EC; D'Alfonso AJ; Allen LJ; Findlay SD; Kirkland AI; Nellist PD
    Ultramicroscopy; 2008 Nov; 108(12):1558-66. PubMed ID: 18639381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a 2k CCD camera with an epitaxially grown CsI scintillator for recording energy-filtered electron cryo-micrographs.
    Yasunaga T; Wakabayashi T
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):101-12. PubMed ID: 18467743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociative scattering of hyperthermal energy CF3+ ions from modified surfaces.
    Rezayat T; Shukla A
    J Chem Phys; 2007 Feb; 126(8):084701. PubMed ID: 17343463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron atomic scattering factors, Debye-Waller factors and the optical potential for high-energy electron diffraction.
    Peng LM
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):199-207. PubMed ID: 16076864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of mean absorptive potential using Lenz model: toward quantification of phase contrast from an electrostatic phase plate.
    Chen KF; Chang CS; Shiue J; Hwu Y; Chang WH; Kai JJ; Chen FR
    Micron; 2008 Aug; 39(6):749-56. PubMed ID: 18068372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refinement of the 200 structure factor for GaAs using parallel and convergent beam electron nanodiffraction data.
    Müller K; Schowalter M; Jansen J; Tsuda K; Titantah J; Lamoen D; Rosenauer A
    Ultramicroscopy; 2009 Jun; 109(7):802-14. PubMed ID: 19386419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distributions of inelastic events produced by electrons in gaseous and liquid water.
    Paretzke HG; Turner JE; Hamm RN; Ritchie RH; Wright HA
    Radiat Res; 1991 Aug; 127(2):121-9. PubMed ID: 1946995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.