BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 12872138)

  • 1. Sustained P450 expression and prodrug activation in bolus cyclophosphamide-treated cultured tumor cells. Impact of prodrug schedule on P450 gene-directed enzyme prodrug therapy.
    Schwartz PS; Chen CS; Waxman DJ
    Cancer Gene Ther; 2003 Aug; 10(8):571-82. PubMed ID: 12872138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductase-based cancer gene therapy.
    Jounaidi Y; Waxman DJ
    Cancer Res; 2001 Jun; 61(11):4437-44. PubMed ID: 11389073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced bystander cytotoxicity of P450 gene-directed enzyme prodrug therapy by expression of the antiapoptotic factor p35.
    Schwartz PS; Chen CS; Waxman DJ
    Cancer Res; 2002 Dec; 62(23):6928-37. PubMed ID: 12460909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrome P450-based cancer gene therapy model.
    Huang Z; Raychowdhury MK; Waxman DJ
    Cancer Gene Ther; 2000 Jul; 7(7):1034-42. PubMed ID: 10917206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of cyclophosphamide-based cytochrome P450 gene therapy using liver P450 inhibitors.
    Huang Z; Waxman DJ
    Cancer Gene Ther; 2001 Jun; 8(6):450-8. PubMed ID: 11498765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene.
    Chen L; Yu LJ; Waxman DJ
    Cancer Res; 1997 Nov; 57(21):4830-7. PubMed ID: 9354446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy.
    Jounaidi Y; Hecht JE; Waxman DJ
    Cancer Res; 1998 Oct; 58(19):4391-401. PubMed ID: 9766669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer.
    Roy P; Waxman DJ
    Toxicol In Vitro; 2006 Mar; 20(2):176-86. PubMed ID: 16293390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene.
    Chen L; Waxman DJ; Chen D; Kufe DW
    Cancer Res; 1996 Mar; 56(6):1331-40. PubMed ID: 8640822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm.
    Wei MX; Tamiya T; Rhee RJ; Breakefield XO; Chiocca EA
    Clin Cancer Res; 1995 Oct; 1(10):1171-7. PubMed ID: 9815909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450.
    Chen CS; Jounaidi Y; Waxman DJ
    Drug Metab Dispos; 2005 Sep; 33(9):1261-7. PubMed ID: 15919850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy.
    Chen L; Waxman DJ
    Cancer Res; 1995 Feb; 55(3):581-9. PubMed ID: 7834628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hypoxia and limited diffusion in tumor cell microenvironment on bystander effect of P450 prodrug therapy.
    Günther M; Waxman DJ; Wagner E; Ogris M
    Cancer Gene Ther; 2006 Aug; 13(8):771-9. PubMed ID: 16543915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity.
    Yu LJ; Drewes P; Gustafsson K; Brain EG; Hecht JE; Waxman DJ
    J Pharmacol Exp Ther; 1999 Mar; 288(3):928-37. PubMed ID: 10027828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of the bioreductive drug tirapazamine with the chemotherapeutic prodrug cyclophosphamide for P450/P450-reductase-based cancer gene therapy.
    Jounaidi Y; Waxman DJ
    Cancer Res; 2000 Jul; 60(14):3761-9. PubMed ID: 10919648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse.
    Pass GJ; Carrie D; Boylan M; Lorimore S; Wright E; Houston B; Henderson CJ; Wolf CR
    Cancer Res; 2005 May; 65(10):4211-7. PubMed ID: 15899812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitumour prodrug development using cytochrome P450 (CYP) mediated activation.
    Patterson LH; McKeown SR; Robson T; Gallagher R; Raleigh SM; Orr S
    Anticancer Drug Des; 1999 Dec; 14(6):473-86. PubMed ID: 10834269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rabbit cytochrome P450 4B1: A novel prodrug activating gene for pharmacogene therapy of hepatocellular carcinoma.
    Mohr L; Rainov NG; Mohr UG; Wands JR
    Cancer Gene Ther; 2000 Jul; 7(7):1008-14. PubMed ID: 10917203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P450 reductase dependent inhibition of cytochrome P450 2B1 activity: Implications for gene directed enzyme prodrug therapy.
    Lengler J; Omann M; Düvier D; Holzmüller H; Gregor W; Salmons B; Günzburg WH; Renner M
    Biochem Pharmacol; 2006 Sep; 72(7):893-901. PubMed ID: 16887103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector.
    Ichikawa T; Petros WP; Ludeman SM; Fangmeier J; Hochberg FH; Colvin OM; Chiocca EA
    Cancer Res; 2001 Feb; 61(3):864-8. PubMed ID: 11221871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.